Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tg ABH vuông tại H
\(\sin\widehat{B}=\dfrac{AH}{AB}=\sin40^0\approx0,6\Leftrightarrow AH\approx0,6\cdot AB=4,2\left(cm\right)\)
1: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}+47^0=90^0\)
=>\(\widehat{C}=43^0\)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}\)
=>\(BC=\dfrac{10}{sin43}\simeq14,66\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{BC^2-AB^2}\simeq10,72\left(cm\right)\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
=>\(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot CB}=\dfrac{BH}{CH}\)
Xét ΔHAB vuông tại H có HD là đường cao
nên \(BD\cdot BA=BH^2\)
=>\(BD=\dfrac{BH^2}{AB}\)
Xét ΔHAC vuông tại H có HE là đường cao
nên \(CE\cdot CA=CH^2\)
=>\(CE=\dfrac{CH^2}{AC}\)
\(\dfrac{BD}{EC}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)
\(=\left(\dfrac{BH}{CH}\right)^2\cdot\dfrac{AC}{AB}=\left(\dfrac{AB^2}{AC^2}\right)^2\cdot\dfrac{AC}{AB}\)
\(=\dfrac{AB^3}{AC^3}\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{3}{5}\)
nên \(\widehat{B}\simeq36^052'\)
Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-36^052'=53^08'\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot7,5=4,5\cdot6=27\)
=>AH=27/7,5=3,6(cm)
Ta có: HB + HC = BC
=>HC = 60 - HB (cm)
Xét △AHC vuông tại H có: \(tan\widehat{C}=\dfrac{AH}{HC}\Rightarrow tan30^0=\dfrac{AH}{HC}\Rightarrow HC=\dfrac{AH}{tan30^0}\left(cm\right)\) (1)
Xét △AHB vuông tại H có: \(tan\widehat{B}=\dfrac{AH}{HB}\Rightarrow tan20^0=\dfrac{AH}{60-HC}\Rightarrow tan20^0\left(60-HC\right)=AH\) (2)
Thay (1) vào (2) ta được: \(\Rightarrow tan20^0\left(60-\dfrac{AH}{tan30^0}\right)=AH \)
\(\Rightarrow tan20^0\left(\dfrac{60.tan30^0}{tan30^0}-\dfrac{AH}{tan30^0}\right)=AH\)
\(\Rightarrow tan20^0\left(\dfrac{60.tan30^0-AH}{tan30^0}\right)=AH\)
\(\Rightarrow tan20^0\left(60.tan30^0-AH\right)=AH.tan30^0\)
\(\Rightarrow tan20^0\left(20\sqrt{3}-AH\right)=AH.tan30^0\)
\(\Rightarrow tan20^0.20\sqrt{3}-AH.tan20^0=AH.tan30^0\)
\(\Rightarrow tan20^0.20\sqrt{3}=AH.\left(tan30^0+tan20^0\right)\)
\(\Rightarrow AH=\dfrac{tan20^0.20\sqrt{3}}{tan30^0+tan20^0}\approx13,3943\left(cm\right)\)
Diện tích của △ABC là: \(S_{ABC}=\dfrac{AH.BC}{2}=\dfrac{13,3943.60}{2}\approx401,83\left(cm^2\right)\)
Vậy...........
hình tự vẽ nha
xét (0) có 2 \(\widehat{CAB}\)= \(\widehat{COB}\)( góc nt - góc ở tâm cùng chắn cung \(\widebat{BC}\))
\(\widehat{COB}\)= \(^{60^0}\)
\(\Delta\)ABC vg tại c
cos 30= AC/AB
AB=2\(\sqrt{3}\)
R= \(\sqrt{3}\)
S hq OBC= \(\frac{60.R^2.3,14}{360}\)=1,57 cm2
\(\widehat{COB}\)= 600
sđ\(\widebat{BC}\)nhỏ= 600
sđ \(\widebat{BC}\) lớn= 360-60=3000
LcgBC LỚN= \(\frac{300.R.3,14}{180}\)\(\approx\)9,06 cm
ko bt có đúng ko nữa
# mã mã #