Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khó vãi!!! Nghỉ ở nhà bây giờ ko nhớ tí kiến thức gì lun!!! Chắc phải mơ sách giáo khoa ra rùi tự nghiên cứu lại thui!!!
b. Vì HE < HF ⇒ ME < MF ( quan hệ giữa hình chiếu và đường xiên) (1 điểm)
Câu 1 :
Ta có: Có DH _l_ EF (gt)
=> H là hình chiếu của D
mà DE < DF (gt)
=> HE < HF (quan hệ đường xiên hình chiếu)
2. Vì HE < HF (từ 1)
=> ME < MF (quan hệ đx, hình chiếu)
3. Xét ΔDHEΔDHE và ΔDHFΔDHF có:
DH: chung
H1ˆ=H2ˆ=90o(gt)H1^=H2^=90o(gt)
nhưng HE < HF (từ 1)
=> HDEˆ<HDFˆHDE^<HDF^ (vì HDEˆHDE^ đối diện với HE; HDFˆHDF^ đối diện với HF)
a. Vì DE < DF ⇒ HE < HF(quan hệ giữa hình chiếu và đường xiên) (1 điểm)
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
AH=AE
=>ΔAHD=ΔAED
b: DH=DE
DE<DC
=>DH<DC
c: Xét ΔAKC có
CH,KE là đường cao
CH căt KE tại D
=>D là trực tâm
=>AD vuông góc KC
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
AH=AE
=>ΔAHD=ΔAED
b: ΔAHD=ΔAED
=>DH=DE
mà DE<DC
nên DH<DC
c: Xét ΔDHK vuông tại H và ΔDEC vuông tại E có
DH=DE
góc HDK=góc EDC
=>ΔDHK=ΔDEC
=>DK=DC
=>ΔDKC cân tại D
d: AH+HK=AK
AE+EC=AC
mà AH=AE và HK=EC
nên AK=AC
mà DK=DC
nên AD là trung trực của KC
mà M là trung điểm của CK
nên A,D,M thẳng hàng
Lời giải:
Xét tam giác $DEH$ và $DFH$ có:
$DE=DF$ có $DEF$ cân tại $D$
$DH$ chung
$\widehat{DHE}=\widehat{DHF}=90^0$
$\Rightarrow \triangle DEH=\triangle DFH$ (ch-cgv)
$\Rightarrow EH=FH$
Xét tam giác $MHE$ và $MHF$ có:
$\widehat{MHE}=\widehat{MHF}=90^0$
$MH$ chung
$EH=FH$ (cmt)
$\Rightarrow \triangle MHE=\triangle MHF$ (c.g.c)
$\Rightarrow ME=MF$
a: Sửa đề: ΔMNP cân tại M
a: Xét ΔMDN vuông tại D và ΔMEP vuông tại E có
MN=MP
góc DMN chung
=>ΔMDN=ΔMEP
b: góc MND+góc HNP=góc MNP
góc MPE+góc HPN=góc MPN
mà góc MND=góc MPE và góc MNP=góc MPN
nên góc HPN=góc HNP
=>ΔHNP cân tại H
c: HN=HP
HP>HD
=>HN>HD
bài này dựa vào quan hệ giữa đường xiên và hình chiếu nhé