Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác DPMQ có góc DPM=góc DQM=góc QDP=90 độ
nên DPMQ là hình chữ nhật
b: Để DPMQ là hình vuông thì DM là phân giác của góc PDQ
=>M là chân đường phân giác kẻ từ D xuống FE
a/ Xét tứ giác DPMQ có
∠EDF=∠MQD=ˆMPD=90oEDF^=MQD^=MPD^=90o
=> Tứ giác DPMQ là hcn
b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF
c/ Có I đx M qua DE
=> DE là đường t/trực của IM
=> DI = DM (1)
=> t/g DIM cân tại D có DE là đường trung trực
=> DE đồng thời là đường pg
=> ˆIDE=ˆEDMIDE^=EDM^ (2)
CMTT : DM = DK (3) ; ˆKDF=ˆFDMKDF^=FDM^ (4)
Từ (2) ; (4)
=> ∠IDE+∠EDF+∠KDF=∠IDK=180oIDE^+EDF^+KDF^=IDK^=180o
=> I,D,K thẳng hàng
Từ (1) ; (3)=> ID = DK
Do đó D là trđ IK
=> I đx K qua D
a: Xét tứ giác DPMQ có góc DPM=góc DQM=góc QDP=90 độ
nên DPMQ là hình chữ nhật
b: Để DPMQ là hình vuông thì DM là phân giác
=>M là chân đường phân giác kẻ từ D xuống FE
c: Ta có: M đối xứng với I qua DE
nên DE là trung trực của MI
=>DM=DI
=>DE là phân giác của góc MDI(1)
Vì M đối xứng với K qua DF
nên DF vuông góc với MK tại trung điểm của MK
=>DF là phân giác của góc MDK(2)
Từ (1) và (2) suy ra góc KDI=2*90=180 độ
=>K,D,I thẳng hàng
mà DI=DK
nên D là trung điểm của IK
a/ Xét tứ giác DPMQ có
\(\widehat{EDF}=\widehat{MQD}=\widehat{MPD}=90^o\)
=> Tứ giác DPMQ là hcn
b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF
c/ Có I đx M qua DE
=> DE là đường t/trực của IM
=> DI = DM (1)
=> t/g DIM cân tại D có DE là đường trung trực
=> DE đồng thời là đường pg
=> \(\widehat{IDE}=\widehat{EDM}\) (2)
CMTT : DM = DK (3) ; \(\widehat{KDF}=\widehat{FDM}\) (4)
Từ (2) ; (4)
=> \(\widehat{IDE}+\widehat{EDF}+\widehat{KDF}=\widehat{IDK}=180^o\)
=> I,D,K thẳng hàng
Từ (1) ; (3)=> ID = DK
Do đó D là trđ IK
=> I đx K qua D
Giải thích các bước giải:
a) xét tứ giác AMEN
góc A =90 *( tấm giác abc vuông tại a
EM vuông góc vs AM nên góc e =90*
en vuông góc vs ac nên góc n bằng 90
suy ra tứ giắc AMEN là hình chữ nhật
b)
vị trí điểm e để tứ giắc AMEN là hình chữ nhật là E là trung điểm cạnh BC
C )
xét tam giác IEK có
AN//EI (AN//EM
N là trung điểm của EK ( E đx vs M qua N
suy ra I đx vs K qua A
Chúc bạn học tốt nhé! ^^
a, Tứ giác DPQM là hình chứ nhật vì có 3góc vuông ( D = Q = P= 90 độ)
b, Để DPMQ là hình vuông thì DM là tia pg của D.
Vậy Mlà giao tỉa pg góc D và EF để DPMQ là hình vuông.
c, Ta có: Góc MDP và HDP đối xứng qua DE nên MDP = HDP
Góc MDQ và GDQ đối xứng qua DF nên MDQ = GDQ
HDG = HDP + MDP + MDQ+ GDQ = 2(MDP + MDQ)= 2.90 180 độ.(2)
HD và MD đối xứng qua ED nên HD = MD
GD và MD đối xứng qua DF nên GD = MD
Suy ra HD = GD (1)
từ (1) và (2) suy ra H đối xứng với G qua D