K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

△DEF vuông tại D có \(\left\{{}\begin{matrix}sinE=\dfrac{DF}{EF}\\cosE=\dfrac{DE}{EF}\\tanE=\dfrac{DF}{DE}\\cotE=\dfrac{DE}{DF}\end{matrix}\right.\)

\(DE=EF.cosE=DF.cotE\\ DF=EF.sinE=DE.tanE\\ EF=\dfrac{DF}{sinE}=\dfrac{DE}{cosE}\)

AH
Akai Haruma
Giáo viên
22 tháng 12 2022

Lời giải:
$EF=\sqrt{ED^2+DF^2}=\sqrt{5^2+12^2}=13$ (cm) theo định lý Pitago

$\sin E=\frac{DF}{EF}=\frac{12}{13}$

$\cos E=\frac{ED}{EF}=\frac{5}{13}$

$\tan E=\frac{DF}{ED}=\frac{12}{5}$

$\cot E=\frac{1}{\tan E}=\frac{5}{12}$

Vì $\widehat{E}, \widehat{F}$ là 2 góc phụ nhau nên:
$\sin F=\cos E=\frac{5}{13}$

$\cos F=\sin E=\frac{12}{13}$

$\tan F=\cot E=\frac{5}{12}$

$\cot F=\tan E=\frac{12}{5}$

10 tháng 11 2023

a: ΔDEF vuông tại D

=>\(DE^2+DF^2=EF^2\)

=>\(EF^2=0,9^2+12^2=144,81\)

=>\(EF=\sqrt{144,81}\)(cm)

Xét ΔDEF vuông tại D có \(tanE=\dfrac{DF}{DE}\)

=>\(tanE=\dfrac{12}{0,9}=\dfrac{120}{9}=\dfrac{40}{3}\)

b: Xét ΔDEF vuông tại D có

\(sinF=\dfrac{DE}{EF}=\dfrac{0.9}{\sqrt{144,81}}\)

\(cosF=\dfrac{DF}{EF}=\dfrac{12}{\sqrt{144,81}}\)

\(tanF=\dfrac{0.9}{12}=\dfrac{9}{120}=\dfrac{3}{40}\)

\(cotF=\dfrac{12}{0.9}=\dfrac{40}{3}\)

9 tháng 3 2017

a, Ta có ∆DEF vuông vì  D E 2 + D F 2 = F E 2

b, c, Tìm được: DK = 24 5 cm và HK = 32 5 cm

K D E ^ ≈ 36 0 52 ' ; K E D ^ = 35 0 8 '

d, Tìm được DM=3cm, FM=5cm và EM =  3 5 cm

e, f, Ta có:  sin D F K ^ = D K D F ;  sin D F E ^ = D E E F

=>  D K D F = D E E F => ED.DF = DK.EF

Xét ΔDEF vuông tại D có 

\(DE=DF\cdot\cos60^0\)

\(=15\cdot\dfrac{1}{2}=7.5\left(cm\right)\)

Áp dụng định lí Pytago vào ΔDFE vuông tại D, ta được:

\(EF^2=DE^2+DF^2\)

\(\Leftrightarrow DF^2=15^2-7.5^2=\dfrac{675}{4}\)

hay \(DF=\dfrac{15\sqrt{3}}{2}\left(cm\right)\)

6 tháng 11 2021

NGO23455678

30 tháng 8 2021

DE=cos E .EF
DE=0,5.15
DE=7,5cm
DF=sinE.EF
DF=\(\dfrac{\sqrt{3}}{2}.15=\dfrac{15\sqrt{3}}{2}\)

30 tháng 8 2021

Ta có: \(\cos60^o=\dfrac{DE}{E\text{F}}=\dfrac{\text{1}}{2}\Rightarrow DE=\dfrac{E\text{F}}{2}=\dfrac{\text{1}5}{2}=7,5cm\)

Áp dụng định lí Py-ta-go vào ΔDEF vuông tại D

⇒ EF2=DE2+DF2 ⇒ DF2=EF2-DE2=152-7,52=168,75

\(DF=\dfrac{15\sqrt{3}}{2}\) cm 

a: \(\sin\widehat{E}=\dfrac{4}{5}\)

\(\cos\widehat{E}=\dfrac{3}{5}\)

\(\tan\widehat{E}=\dfrac{4}{3}\)

\(\cot\widehat{E}=\dfrac{3}{4}\)

a: Xét ΔDFE vuông tại D có

\(FE^2=DE^2+DF^2\)

hay FE=7,5(cm)

Xét ΔDEF vuông tại D có 

\(\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{4}{5}\)

\(\cos\widehat{E}=\dfrac{3}{5}\)

\(\tan\widehat{E}=\dfrac{4}{3}\)

\(\cot\widehat{E}=\dfrac{3}{4}\)

b: \(\cos\widehat{E}=\dfrac{3}{5}\)

nên \(\widehat{E}=53^0\)

góc F=90-30=60 độ

Xét ΔDEF vuông tại D có sin E=DF/EF

=>DF/20=1/2

=>DF=10cm

=>DE=10*căn 3(cm)