K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

D E F M 12 16 H

Xét tam giác HED và tam giác DEF có:

góc E chung

Góc H = D = 90o

Do đó: tam giác HED~DEF ( g.g)

=> \(\dfrac{HE}{DE}=\dfrac{HD}{DF}\) => \(\dfrac{HE}{HD}=\dfrac{DE}{DF}\)

Ta có: \(\dfrac{EM}{DN}=\dfrac{\dfrac{1}{2}HE}{\dfrac{1}{2}HD}\Rightarrow\dfrac{EM}{DN}=\dfrac{HE}{DE}=\dfrac{HD}{DF}\Rightarrow\dfrac{EM}{DN}=\dfrac{DE}{DF}\)(1)

Xét tam giác HED và tam giác HDF có:

góc H = 90o

góc HDE = HFD ( cùng phụ góc E)

Do đó : tam giác HED~HDF (g.g)

=> góc HED = HDF

Xét tam giác DME và tam giác FND có:

góc HED = HDF (cmt)

\(\dfrac{EM}{DN}=\dfrac{DE}{DF}\) ( THEO (1))

Do đó: tam giác DME~FND (c.g.g)

=> \(\dfrac{DM}{FN}=\dfrac{DE}{FD}\Rightarrow DM.FD=FN.DE\)

30 tháng 4 2018

Tự vẽ hình. Mà cho độ dài của DE và DF với câu này hình như thừa :))

Xét tam giác EHD vuông tại H => góc E + góc EDH = 90 độ

Mà góc EDH + góc NDF = 90 độ => góc E = góc NDF

Dễ CM được tam giác EHN đồng dạng với tam giác EDF (g.g)

=> \(\dfrac{ÊH}{HN}=\dfrac{ED}{DF}\Rightarrow\dfrac{2EM}{2DN}=\dfrac{ED}{DF}\Rightarrow\dfrac{EM}{DN}=\dfrac{ED}{DF}\)

Xét tam giác EMD và tam giác DNF có:

góc E = góc NDF, \(\dfrac{EM}{DN}=\dfrac{DE}{DF}\)

=> Tam giác EMD đồng dạng với tam giác DNF (c.g.c)

=> \(\dfrac{DM}{FN}=\dfrac{DE}{FD}\Rightarrow DM.FD=DE.FN\)

a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xet ΔEDF có EK là phân giác

nên DK/DE=FK/FE

=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1

=>DK=3cm; FK=5cm

b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có

góc DEK=góc HEI

=>ΔDEK đồng dạng với ΔHEI

=>ED/EH=EK/EI

=>ED*EI=EK*EH

c: góc DKI=90 độ-góc KED

góc DIK=góc HIE=90 độ-góc KEF

mà góc KED=góc KEF
nên góc DKI=góc DIK

=>ΔDKI cân tại D

mà DG là trung tuyến

nên DG vuông góc IK

18 tháng 3 2023

bạn ơi, góc DKI vuông góc từ đâu vậy?

 

25 tháng 12 2022

hình tự kẻ

tứ giác ADBH có:

D vuông (gt)

Góc HAD vuông ( AH vuông DE )

Góc HBD vuông ( BH vuông DF )

=> tứ giác ADBH là HCN

=> AB=DH; I là trung điểm của AB và DH ( tính chất hcn )

Ta có:

AB=DH (cmt)

I là trung điểm của AB và DH (cmt)

=> IH = IB 

Tam giác HIB có:

IH = IB (cmt)

=> tam giác HIB cân tại I

=> góc IHB = góc IBH (2 góc đáy trong tam giác cân )

 

26 tháng 12 2022

hum

a: \(DE=\sqrt{15^2-12^2}=9\left(cm\right)\)

\(S_{DEF}=\dfrac{1}{2}\cdot9\cdot12=6\cdot9=54\left(cm^2\right)\)

b: Xét tứ giác DMHN có

góc DMH=góc DNH=góc MDN=90 độ

nên DMHN là hình chữ nhật

c: Xét tứ giác DHMK có

DK//MH

DK=MH

Do đó: DHMK là hình bình hành