Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
hình tự kẻ
tứ giác ADBH có:
D vuông (gt)
Góc HAD vuông ( AH vuông DE )
Góc HBD vuông ( BH vuông DF )
=> tứ giác ADBH là HCN
=> AB=DH; I là trung điểm của AB và DH ( tính chất hcn )
Ta có:
AB=DH (cmt)
I là trung điểm của AB và DH (cmt)
=> IH = IB
Tam giác HIB có:
IH = IB (cmt)
=> tam giác HIB cân tại I
=> góc IHB = góc IBH (2 góc đáy trong tam giác cân )
Tình hình kinh doanh khác thì cũncũng khôngkhông khí ckhí thếthế nhỉ mình cũng không phải ai muốn làm gì có ai biết mấy bạn cứ nói thẳng ra luôn rồi đó bác ah bác nào dùng rồi cho vào túi nôn thì nó vẫn còn nhiều người dùng có sẽ không còncòn được nó đâu phải chỉ là những thứ khác thì không thể nào có thể
D E F M 12 16 H
Xét tam giác HED và tam giác DEF có:
góc E chung
Góc H = D = 90o
Do đó: tam giác HED~DEF ( g.g)
=> \(\dfrac{HE}{DE}=\dfrac{HD}{DF}\) => \(\dfrac{HE}{HD}=\dfrac{DE}{DF}\)
Ta có: \(\dfrac{EM}{DN}=\dfrac{\dfrac{1}{2}HE}{\dfrac{1}{2}HD}\Rightarrow\dfrac{EM}{DN}=\dfrac{HE}{DE}=\dfrac{HD}{DF}\Rightarrow\dfrac{EM}{DN}=\dfrac{DE}{DF}\)(1)
Xét tam giác HED và tam giác HDF có:
góc H = 90o
góc HDE = HFD ( cùng phụ góc E)
Do đó : tam giác HED~HDF (g.g)
=> góc HED = HDF
Xét tam giác DME và tam giác FND có:
góc HED = HDF (cmt)
\(\dfrac{EM}{DN}=\dfrac{DE}{DF}\) ( THEO (1))
Do đó: tam giác DME~FND (c.g.g)
=> \(\dfrac{DM}{FN}=\dfrac{DE}{FD}\Rightarrow DM.FD=FN.DE\)
Tự vẽ hình. Mà cho độ dài của DE và DF với câu này hình như thừa :))
Xét tam giác EHD vuông tại H => góc E + góc EDH = 90 độ
Mà góc EDH + góc NDF = 90 độ => góc E = góc NDF
Dễ CM được tam giác EHN đồng dạng với tam giác EDF (g.g)
=> \(\dfrac{ÊH}{HN}=\dfrac{ED}{DF}\Rightarrow\dfrac{2EM}{2DN}=\dfrac{ED}{DF}\Rightarrow\dfrac{EM}{DN}=\dfrac{ED}{DF}\)
Xét tam giác EMD và tam giác DNF có:
góc E = góc NDF, \(\dfrac{EM}{DN}=\dfrac{DE}{DF}\)
=> Tam giác EMD đồng dạng với tam giác DNF (c.g.c)
=> \(\dfrac{DM}{FN}=\dfrac{DE}{FD}\Rightarrow DM.FD=DE.FN\)