Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tam giác DEF vuông tại D
=>\(DE^2+DF^2=EF^2\)
=> EF=30(cm)
Vì Diện tích DEF=\(\dfrac{DI.EF}{2}=\dfrac{DE.DF}{2}\)
=> DI= 14.4
vì tam giác DIE vuông tại I
=>\(DI^2+EI^2=ED^2\)
=>EI=10.8
=>DI=19.2
b)xét tứ giác DQEI có 3 góc vuông DQE,QEI,EID
=>DQEI là hình chữ nhật
=>DE và QI cắt nhau tại trung điểm mỗi đường
Mà S là trung điểm DE
=> S là trung điểm QI
=>Q,S,I thẳng hàng
Câu b: Xet tg vuông AEH và tg vuông ABC có
^BAH = ^ACB (cùng phụ với ^ABC)
=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)
\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)
Câu c:
Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg AMC cân tại M => ^MAC = ^ACB mà ^BAH = ^ACB (cmt) => ^MAC = ^BAH (1)
Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)
Gọi giao của AH với EF là O xét tg AOF có
AH=EF (hai đường chéo HCN = nhau)
O là trung điểm của AH vào EF
=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)
Từ (2) và (3) => ^AFE = ^ABC (4)
Mà ^ABC + ^ACB = 90 (5)
Từ (1) (4) (5) => ^MAC + ^AFE = 90
Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K