K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: DF=căn 13^2-5^2=12cm

b: DE<DF

=>góc DFE<góc DEF

c: Xét ΔFDN vuông tại D và ΔFHN vuông tại H có

FN chung

góc DFN=góc HFN

=>ΔFDN=ΔFHN

=>ND=NH

Xét ΔNDK vuông tại D và ΔNHE vuông tại H có

ND=NH

góc DNK=góc HNE

=>ΔNDK=ΔNHE

=>KN=EN

6 tháng 5 2022

Trả lời nhanh giúp mình zới ạ

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

Ta có hình vẽ sau:

E D F K A B

a) Ta có \(\Delta DEF\)vuông tại E

=> ED2+EF2=DF2 ( Theo định lý Py-ta-go)

=> 82+62=DF2

=> DF2=100

=> DF=10(cm)

Vậy DF=10cm

b) Xét \(\Delta DKE\)và \(\Delta DKA\):

DK: cạnh chung

\(\widehat{EDK}=\widehat{ADK}\left(gt\right)\)

\(\widehat{DEK}=\widehat{DAK}=90^o\)

=> \(\Delta KDE=\Delta KDA\left(ch-gn\right)\)

=> DE=DA( 2 cạnh t/ứ)

=> đpcm

c) Ta có: \(\Delta DEK=\Delta DAK\)(cm câu b)

=> EK=AK( 2 cạnh t/ứ)

Xét \(\Delta EKB\)vuông tại E có: KB>KE

=> KB> AK

d) Xét \(\Delta EKB\)và \(\Delta AKF\):

\(\widehat{BEK}=\widehat{FAK}=90^o\)

EK=AK( cm câu c)

\(\widehat{EKB}=\widehat{FKB}\left(đđ\right)\)

=> \(\Delta BEK=\Delta FAK\left(g.c.g\right)\)

=> EB=AF (2 canh t/ứ)

Lại có DE=DA(cm câu b)

=> DE+EB=DA+AF

=> DB=DF

=> \(\Delta DBF\)cân ở D

=> \(\widehat{DBF}=\frac{180^o-\widehat{BDF}}{2}\left(1\right)\)

Mà \(\Delta DEA\)cân ở D(DE=DA)

=> \(\widehat{DEA}=\frac{180^o-\widehat{EDA}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{DBF}=\widehat{DEA}\)

Mà 2 góc này ở vị trí đồng vị

=> EA//BF

=> đpcm

P/s: Mệt quá O.O''

a: Xet ΔDEN và ΔFEN có

ED=EF
góc DEN=góc FEN

EN chung

=>ΔDEN=ΔFEN

=>ND=NF

=>ΔNDF cân tại N

b: ΔDEN=ΔNFE

=>góc NFE=90 độ

=>NF vuông góc EF

c: Xét ΔDEP có

DF là trung tuyến

DF=EP/2

=>ΔDEP vuông tại D

2 tháng 4 2021

undefined

1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

2: Ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔABE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔABE đều

3: Xét ΔABC vuông tại A có 

\(\cos B=\dfrac{AB}{BC}=\dfrac{5}{BC}\)

=>BC=10(cm)

1/ Chứng minh: ΔΔABD = ΔΔEBD

Xét  ΔΔABD và ΔΔEBD, có:

            ˆBAD=ˆBED=900BAD^=BED^=900

            BD là cạnh huyền chung

            ˆABD=ˆEBDABD^=EBD^ (gt)

Vậy ΔΔABD = ΔΔEBD  (cạnh huyền – góc nhọn)

2/ Chứng minh:ΔΔABE là tam giác đều.

ΔΔABD =ΔΔEBD (cmt)

=> AB = BE

mà  ˆB=600B^=600  (gt)

Vậy  ΔΔABE có  AB = BE và   nên  ΔΔABE đều.

3/  Tính độ dài cạnh BC

Ta có :  Trong ΔΔ ABC vuông tại A có ˆA+ˆB+ˆC=1800A^+B^+C^=1800 

               mà ˆA=900;ˆB=600(gt)A^=900;B^=600(gt)  => ˆC=300C^=300

 Ta có  :  ˆBAC+ˆEAC=900BAC^+EAC^=900 (ΔΔABC vuông tại A)

                Mà ˆBAE=600BAE^=600(ΔΔABE đều)  nên ˆEAC=300EAC^=300

Xét ΔΔEAC có ˆEAC=300EAC^=300 và ˆC=300C^=300 nên ΔΔEAC cân tại E

            => EA = EC mà EA = AB = EB = 5cm

Do đó EC = 5cm

Vậy BC = EB + EC = 5cm + 5cm = 10cm

19 tháng 3 2019

a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD 

Suy ra góc ABD = góc EBD 

Vậy tam giác ABD = tam giác EBD 

b) Ta có: AB=EB ( tam giác ABD = tam giác EBD ) 

Suy ra tam giác ABE cân tại B 

Tam giác ABE cân tại B có góc EBA =60 độ 

Suy ra tam giác ABE là tam giác đều 

c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ 

Suy ra ACB = 30 độ 

Suy ra tam giác ABC là nửa tam giác đều  

Suy ra AB = 1/2 BC 

Suy ra BC = 2AB = 2 . 5 = 10 cm

chúc bạn học tốt! smileyyesheartwink

19 tháng 3 2019

d) như phần c nha bn

12 tháng 4 2017