\(\in\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

A B C 9 12 D E

a, Xét tam giác ABC và tam giác EDC ta có : 

^C _ chung 

\(\frac{BC}{DC}=\frac{AC}{EC}\)

^BAE = ^CED = 90^0 

=> tam giác ABC ~ tam giác CED ( g.c.g ) 

HAB ? ^H ở đâu bạn ? 

b, Vì AD là tia phân giác tam giác ABC ta có : 

\(\frac{AB}{AC}=\frac{BD}{DC}\Leftrightarrow\frac{9}{12}=\frac{BD}{DC}\)

hay \(\frac{BD}{DC}=\frac{9}{12}\)tự tính BD và CD nhé 

c, Vì AB vuông AC ; DE vuông AC => AB // DE. Áp dụng hệ quả Ta lét : 

\(\frac{CE}{BC}=\frac{DE}{AB}\)thay dữ liệu bên phần b tính 

d, Áp dụng Py ta go với dữ kiện bên trên tìm tí số 

a: \(EF=\sqrt{9^2+12^2}=15\left(cm\right)\)

\(DI=\dfrac{15}{2}=7.5\left(cm\right)\)

DH=9*12/15=108/15=7,2cm

b: Xét tứ giác DMIN có

góc DMI=góc DNI=góc MDN=90 độ

nên DMIN là hình chữ nhật

c: Vì DMIN là hình chữ nhật

nên DI cắt MN tại trung điểm của mỗi đường

=>M đối xứng với N qua O

3 tháng 8 2016

Bài 1:

Gọi chiều dài là x,gọi chiều rộng là y

Vì chiều rộng kém chiều dài 20cm ta có: x-20=y hay x-y=20  (1)

Vì chu vi hình chữ nhật là 72, ta có: (x+y).2=72 => x+y=36   (2)

Từ (1)(2) ta có:\(\begin{cases}x-y=20\\x+y=36\end{cases}\) \(\Leftrightarrow\begin{cases}x=20+y\\20+y+y=36\end{cases}\)

\(\Leftrightarrow\begin{cases}x=20+y\\2y=16\end{cases}\) \(\Leftrightarrow\begin{cases}x=20+y\\y=8\end{cases}\) \(\Leftrightarrow\begin{cases}x=28\\y=8\end{cases}\)

Diện tịhs hình chữ nhật là: x.y=28.8=224

  

 

3 tháng 8 2016

Bài 2

Xét ΔHAB và ΔACB có:

    \(\widehat{AHB}=\widehat{BAC}=90\)

   \(\widehat{B}\) : góc chung

=>ΔHAB~ΔACB(g.g)

b) Xét ΔABC vuông tại A(gt)

=>\(BC^2=AB^2+AC^2\) (theo định lý pytago)

=>\(BC^2=12^2+16^2=400\)

=>BC=20cm

Vì ΔHAB~ΔACB(cmt)

=>\(\frac{AH}{AC}=\frac{AB}{BC}\)

=>\(AH=\frac{AB\cdot AC}{BC}=\frac{12\cdot16}{20}=9,6cm\)

a: \(S_{DEF}=\dfrac{DE\cdot DF}{2}=\dfrac{DH\cdot FE}{2}\)

nên \(DE\cdot DF=DH\cdot FE\)

c: Xét ΔDHE vuông tại H có HN là đường cao

nên \(DN\cdot DE=DH^2\left(1\right)\)

XétΔDHF vuông tại H có HM là đường cao

nên \(DM\cdot DF=DH^2\left(2\right)\)

Từ(1) và (2) suy ra \(DN\cdot DE=DM\cdot DF\)

hay DN/DF=DM/DE

Xét ΔDNM vuông tại D và ΔDFE vuông tại D có

DN/DF=DM/DE

Do đó: ΔDNM\(\sim\)ΔDFE