Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
a: Xét ΔEDF vuông tại D có DH là đường cao
nên \(DE^2=EH\cdot EF\)
b: EF=10cm
\(EH=\dfrac{6^2}{10}=3.6\left(cm\right)\)
Xét ΔDEF có EM là phân giác
nên DM/DE=FM/FE
=>DM/3=FM/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DM}{3}=\dfrac{FM}{5}=\dfrac{8}{8}=1\)
=>DM=3cm; FM=5cm
a: Xét ΔDEF có DI là phân giác
nên \(\dfrac{DE}{DF}=\dfrac{EI}{IF}\)
=>\(\dfrac{EI}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)
=>EI=8(cm)
b: Ta có: EI+IF=EF
=>EF=6+8=14(cm)
Xét ΔEDF có MI//DF
nên \(\dfrac{MI}{DF}=\dfrac{EI}{EF}=\dfrac{EM}{ED}\)
=>\(\dfrac{MI}{6}=\dfrac{EM}{10}=\dfrac{6}{14}=\dfrac{3}{7}\)
=>\(MI=\dfrac{18}{7}\left(cm\right);EM=\dfrac{30}{7}\left(cm\right)\)
MD+ME=DE
=>MD+30/7=10
=>MD=40/7(cm)
c: Xét ΔDEF có DI là phân giác
nên \(\dfrac{EI}{IF}=\dfrac{ED}{DF}\left(1\right)\)
Xét ΔEDF có MI//DF
nên \(\dfrac{EI}{IF}=\dfrac{ME}{MD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ED}{DF}=\dfrac{ME}{MD}\)
a) Bạn tự tính EF = 10cm nhá
Xét \(\Delta DEF\) có EM là phân giác
\(\Rightarrow\frac{DE}{FE}=\frac{DM}{FM}\Leftrightarrow\frac{DE}{FE+DE}=\frac{DM}{FM+DM}\Leftrightarrow\frac{6}{10+6}=\frac{DM}{8}\Leftrightarrow DM=3cm\)
Có DM + MF = DF \(\Rightarrow\) MF = 5cm
b+c) Xét \(\Delta DEM\) và \(\Delta KEI\) có:
\(\widehat{DEM}=\widehat{KEI};\widehat{EDM}=\widehat{EKI}=90^o\)
\(\Rightarrow\) \(\Delta DEM\) ~ \(\Delta KEI\)
\(\Rightarrow\frac{DE}{KE}=\frac{EM}{EI}\Leftrightarrow DE.EI=KE.EM\)
tính EF nhaaa