Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha
a) Xét △PED và △PFK, ta có
Góc D = Góc K = \(90^0\)
Góc P chung
⇒ △PED ∼ △PFK ( g-g )
⇒ \(\dfrac{PE}{PD}=\dfrac{PF}{PK}\) ( đpcm )
a: Xét ΔADI vuông tại D và ΔAHI vuông tại H có
AI chung
\(\widehat{DAI}=\widehat{HAI}\)
Do đó: ΔADI=ΔAHI
=>AD=AH
mà AD=AB
nên AH=AB
Xét ΔABK vuông tại B và ΔAHK vuông tại H có
AB=AH
AK chung
DO đó: ΔABK=ΔAHK
b: ΔAHK=ΔABK
=>\(\widehat{HAK}=\widehat{BAK}\)
=>AK là phân giác của \(\widehat{BAH}\)
=>\(\widehat{HAK}=\dfrac{1}{2}\cdot\widehat{BAH}\)
\(\widehat{IAK}=\widehat{IAH}+\widehat{HAK}\)
\(=\dfrac{1}{2}\cdot\widehat{DAH}+\dfrac{1}{2}\cdot\widehat{BAH}\)
\(=\dfrac{1}{2}\cdot\left(\widehat{DAH}+\widehat{BAH}\right)=\dfrac{1}{2}\cdot90^0=45^0\)
xét tg ABF và tg EBF có
BF chung
gABF = gEBF (gt)
AB = BE (gt)
=> tgABF = tgEBF (c-g-c)
vì tg ABF = tgEBF (theo (a) )
=> gBAF = gBEF = 90O
=> AF = EF
xét tg AFK và tg EFC
AF= EF (cmt)
gAFK =g EFC (đ.đ)
gBAF = gBEF (CMT)
=> tg AFK = TG EFC (g-c-g)
=> AK = EC ( 2 cạnh t/ư)
=> BA + AK = BE + EC
hay BK = BC
=> tg BCK cân
Bùi Như Lạc cậu cũng hay đi bình phẩm người khác nhỉ chắc cậu hoàn hảo lắm à
a) Ta có : Vì góc BNA là góc ngoài của tam giác NAC nên
\(\widehat{BNA}=\widehat{C}+\widehat{NAC}=\widehat{C}+\frac{1}{2}\widehat{A}\)
Lại có
\(\hept{\begin{cases}\widehat{HAC}+\widehat{BAH}=90^0\\\widehat{HAC}+\widehat{HCA}=90^0\end{cases}\Rightarrow}\widehat{C}=\widehat{BAH}\)
Vậy \(\widehat{BAN}=\frac{1}{2}\widehat{A}+\widehat{C}=\widehat{BNA}\)hay tam giác BAN cân
b) K là giao của hai tia phân giác trong tam giác BAH nên BK cũng là phân giác của góc ABH
Mặt khác BM là đường trung tuyến trong tam giác cân BAN nên BM cũng là phân giác của góc ABN(\(\widehat{ABH}=\widehat{ABN}\))
Mà góc ABH chỉ có duy nhất 1 tia phân giác nên BK và BM trung nhau hay B,K,M thẳng hàng
a,Ta có ΔABC cân ở góc A => góc ABC=góc ACB =180(độ)−BAC2(1)
Ta có BD=CE(gt);AB=AC(gt)
mà AB+BD=AD và AC+CE=AE
=> AD=AE
=>ΔADE cân tại A ( Có hai góc bằng nhau)
=>góc ADE= góc AED=(180 độ - DAE) :2 (2)
Từ (1) và (2) => góc ABC= góc ADE=góc ACB=góc AED
mà góc ABC và góc ADE ở vị trí đồng vị
=>BC // DE(đpcm)
b)ta có góc ABC= góc MBD (đối đỉnh )
góc ACB= góc NCE( đối đỉnh )
mà Góc ABC=Góc ACB => góc MBD= góc NCE
Xét hai tam giác vuông ΔBMD và ΔCNE
có BD=CE (gt)
góc MBD= góc NCE (c/m trên)
=>ΔBMD=ΔCNE(Cạnh huyền - Góc nhọn)
=> DM=EN(Hai cạnh tương ứng)
c) Gọi giao điểm của AM và BI là E
giao điểm của AN và CI là F
Vì ΔBMD=ΔCNE( chứng minh trên ) =>BM=CN( Hai cạnh tương ứng)
Ta có : Góc ABC= Góc ACB ( gt)
mà Góc ABC + Góc ABM=180 độ ( kề bù)
và Góc ACB+góc ACN= 180 độ ( kề bù)
=>Góc ABM=góc ACN
Xét ΔABM VÀ ΔACN có:
AB=AC(gt)
Góc ABM=Góc ACN(cmt)
BM=CM ( cmt)
=> ΔABM=ΔACN(c−g−c)
=> Góc AMB=Góc ANC (hai góc tương ứng )
=> ΔAMN Cân ở A ( có hai góc bằng nhau) (đpcm)
D,(hơi dài )
ta có tam giác AMN cân ở A=> AM=AN( hai cạnh bên) (3)
Xét hai tam giác vuông Tam giác EMB và tam giác FCN có:
Góc EMB=góc FNC (cmt)
MB=CN(cmt)
=> tam giác EMB= tam giác FNC ( cạnh huyền -góc nhọn)
=>EM=FN(hai cạnh tương ứng ) (4)
Ta có (3) (4) mà AE+EM=AM và AF+FN=AN
=> AE=AF
Xét hai tam giác vuông tam giác AEI và tam giác AFI có
AI cạnh chung
AE=AF(cmt)
=> tam giác AEI = Tam giác AFI (cạnh huyền-cạnh góc vuông)
=>Góc AIE=Góc AIF( góc tương ứng ) (10)
ta có góc EBM+MBD=góc EBD= góc ABI (đối đỉnh)(5)
góc FCN+NCE= Góc FCE= góc ACI( đối đỉnh )(6)
mà góc EBM= góc FCN (cmt)(7)
góc MDB=góc NCE(gt) (8)
từ (5)(6)(7)(8)=> góc ABI = góc ACI (9)
từ (9) (10)=> góc BAI=góc CAI ( tổng 3 góc của một tam giác ) (đpcm)
Chúc bạn học giỏi nha Thiên Yết >.<
góc FDE=góc FKE=90 độ
=>FDKE nội tiếp
=>góc PKD=góc PFE=45 độ
=>góc PKD=1/2*góc PKF
=>KD là phân giác của góc PKF