Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDEF có DI là phân giác
nên \(\dfrac{DE}{DF}=\dfrac{EI}{IF}\)
=>\(\dfrac{EI}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)
=>EI=8(cm)
b: Ta có: EI+IF=EF
=>EF=6+8=14(cm)
Xét ΔEDF có MI//DF
nên \(\dfrac{MI}{DF}=\dfrac{EI}{EF}=\dfrac{EM}{ED}\)
=>\(\dfrac{MI}{6}=\dfrac{EM}{10}=\dfrac{6}{14}=\dfrac{3}{7}\)
=>\(MI=\dfrac{18}{7}\left(cm\right);EM=\dfrac{30}{7}\left(cm\right)\)
MD+ME=DE
=>MD+30/7=10
=>MD=40/7(cm)
c: Xét ΔDEF có DI là phân giác
nên \(\dfrac{EI}{IF}=\dfrac{ED}{DF}\left(1\right)\)
Xét ΔEDF có MI//DF
nên \(\dfrac{EI}{IF}=\dfrac{ME}{MD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ED}{DF}=\dfrac{ME}{MD}\)
a: Xét ΔDEF có DI là phân giác
nên \(\dfrac{IE}{IF}=\dfrac{DE}{DF}\)
=>\(\dfrac{IE}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)
=>IE=8(cm)
b: Xét ΔEDF có MI//DF
nên \(\dfrac{EM}{ED}=\dfrac{EI}{EF}\)
=>\(\dfrac{EM}{10}=\dfrac{8}{12.8}=\dfrac{5}{8}\)
=>\(EM=\dfrac{50}{8}=6,25\left(cm\right)\)
Ta có: ME+MD=DE
=>MD+6,25=10
=>MD=3,75(cm)
Xét ΔEDF có IM//DF
nên \(\dfrac{IM}{DF}=\dfrac{EI}{EF}\)
=>\(\dfrac{IM}{6}=\dfrac{8}{12,8}=\dfrac{5}{8}\)
=>\(IM=6\cdot\dfrac{5}{8}=3,75\left(cm\right)\)
c: Xét ΔEDF có MI//DF
nên \(\dfrac{ME}{MD}=\dfrac{EI}{IF}\)
mà \(\dfrac{EI}{IF}=\dfrac{DE}{DF}\)
nên \(\dfrac{ME}{MD}=\dfrac{DE}{DF}\)
a: ND=DP=10/2=5cm
Xét ΔDMN có DE là phân giác
nên ME/EN=MD/DN=4/5
Xét ΔMDP có DF là phân giác
nên MF/FP=MD/DP=4/5
b: Xét ΔMNP có ME/EN=MF/FP
nên EF//NP
c: Xét ΔMKF và ΔMDP có
góc MKF=góc MDP
góc KMF chung
=>ΔMKF đồng dạng với ΔMDP
d: Xét ΔMND có EK//ND
nên EK/ND=MK/MD
Xét ΔMDP cóa KF//DP
nên KF/DP=MK/MD
=>EK/ND=KF/DP
=>EK=KF
=>K là trung điểm của EF
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
a: Xét tứ giác DIMK có
\(\widehat{DIM}=\widehat{DKM}=\widehat{KDI}=90^0\)
=>DIMK là hình chữ nhật
b: Xét tứ giác DEHF có
M là trung điểm chung của DH và EF
=>DEHF là hình bình hành
Hình bình hành DEHF có \(\widehat{FDE}=90^0\)
nên DEHF là hình chữ nhật
b: Xét ΔMEC có \(\widehat{EMC}=\widehat{C}\left(=\widehat{B}\right)\)
nên ΔMEC cân tại E