Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này tương tự bài 1
a) EF = 15
=> DM = EM = FM = 7,5
b) MND + D = 180
MND + 90 = 180
=> MND = 90
D + MED = 180
90 + MED = 180
=> MED = 90
=> DNME là hình chữ nhật
c) y hệt như bài trước mik giải
bạn tự vẽ hình nha!Nên sửa DQEF thành DQEP.
a,tứ giác DQEP có:ME=MD,MQ=MP nên DQEP là hình bình hành.
Lại có:DE vuông góc với QP nên hình bình hành DQEP là hình thoi.
b,DQEP là hình thoi nên EP song song với DQ mà FK song song với PE nên DQ song song với FK(1)
Lại có:DF và QK cùng vuông góc với DM nên DF song song với QK(2).
Từ (1) và (2) suy ra DFKQ là hình bình hành
a) Vì M trung điểm DF => MD=MF
K đối xứng với M qua I => KM=MI
=> DKFI là hbh ( 2 đường chéo cắt nhau tại trung điểm mỗi đg)
Mà có ^I=90o ( DI là đường cao)
=> DKFI là hcn ( hbh có 1 góc _|_)
b) Vì DKFI là hcn=> ^D=^K=^I=^F=90 độ
=> IK_|_DF => DKFI là hình vuông (theo dấu hiệu nhận bt)
Để \(\Delta\)DEF cần thêm đk là hình vuông => DK_|_KF
=> DE=DF ( \(\Delta\)DEF trở thành \(\Delta\) cân )
Mà lại có DI là đường cao
=> \(\Delta\) DEF là \(\Delta\) vuông cân
Vậy \(\Delta\)DEF cần điều kiện DK_|_KF
Bài 2:
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trug điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
b: Để AMCK là hình vuông thì AM=CM
=>AM=BC/2
=>ΔABC vuông tại A
a: Xét ΔDEF có
M là trung điểm của DE
N là trung điểm của DF
Do đó: MN là đường trung bình của ΔFED
a: Xét tứ giác AEDF có
AE//DF
AF//DE
Do đó: AEDF là hình bình hành
b: Để AEDF là hình thang vuông thì góc A=90 độ
a. Ta có: N đối xứng với E qua M (gt)
=> EM = MN
=> M là trung điểm của EN
Xét tứ giác DEFN, có:
M là trung điểm của EN (cmt)
M là trung điểm của DF (gt)
=> DEFN là hình bình hành (dhnb)
\(\text{a. Ta có: N đối xứng với E qua M (gt)}\)
=> EM = MN
=> M là trung điểm của EN
\(\text{Xét tứ giác DEFN, có:}\)
\(\text{ M là trung điểm của EN (cmt)}\)
\(\text{ M là trung điểm của DF (gt)}\)
=> DEFN là hình bình hành (dhnb)
pn tự vẽ hình nhak
a, có MP // DE (GT) suy ra MP // DN ( N thuộc DF )
MN // DF (GT) suy ra MN // DP ( P thuộc DF )
Suy ra tứ giác NMPD là hình bình hành ( dấu hiệu nhận biết các cạnh đối // )
b, ( cm ngược lại nhak )
có tứ giác NMPD là HCN suy ra góc NDB = 90 độ
suy ra tam giác DEF vuông tại D
Vậy nếu tam giác DEF vuông tại D thì tứ giác NMPD là HCN
c, có tứ giác NMPD là HV suy ra DM là tia phân giác của góc D ứng vs cạnh EF
Vậy nếu DM là tia phân giác của góc D thì tứ giác MNPD là HV
<<< mk lm v có j sai sót pn góp ý dùm mk nhak >>>