Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)
\(\text{Δ A'B'C' ∼ Δ ABC}\) theo tỉ số đồng dạng k = \(\dfrac{3}{5}\)
⇒ \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=k=\dfrac{3}{5}\) (1)
Áp dúng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=\dfrac{A'B'+B'C'+A'C'}{AB+BC+AC}=\dfrac{C_{A'B'C'}}{C_{ABC}}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{5}\) (*)
b)
Theo đề ra, ta có:
\(C_{ABC}-C_{A'B'C'}=40\left(dm\right)\)
⇒ \(C_{ABC}=40+C_{A'B'C'}\) (**)
Thay (**) vào (*), ta được:
\(\dfrac{C_{A'B'C'}}{40+C_{A'B'C'}}=\dfrac{3}{5}\)
⇒ \(5C_{A'B'C'}=120+3C_{A'B'C'}\)
⇔ \(2C_{A'B'C'}=120\)
⇒ \(C_{A'B'C'}=60\) (dm)
⇒ \(C_{ABC}=40+60=100\) (dm)

b) Ta có: ΔMNP∼ΔDEF(cmt)
nên \(\dfrac{C_{MNP}}{C_{DEF}}=k\)
hay \(\dfrac{C_{MNP}}{C_{DEF}}=\dfrac{3}{5}\)

a) Ta có \(\Delta ABC\backsim\Delta DEF\) theo tỉ số đồng dạng \(k = \frac{2}{5}\) nên
\(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}} = \frac{2}{5} \Rightarrow AB = \frac{2}{5}DE;AC = \frac{2}{5}DF;BC = \frac{2}{5}EF\).
Chu vi tam giác \(ABC\) là:
\({C_{ABC}} = AB + AC + BC\) (đơn vị độ dài).
Chu vi tam giác \(DEF\) là:
\({C_{DEF}} = DE + DF + EF\)
Tỉ số chu vi của \(\Delta ABC\) và \(\Delta DEF\) là:
\(\frac{{{C_{ABC}}}}{{{C_{DEF}}}} = \frac{{AB + AC + BC}}{{DE + DF + EF}} = \frac{{\frac{2}{5}DE + \frac{2}{5}DF + \frac{2}{5}EF}}{{DE + DF + EF}} = \frac{{\frac{2}{5}\left( {DE + DF + EF} \right)}}{{DE + DF + EF}} = \frac{2}{5}\).
b) Chu vi tam giác \(ABC\) là:
\(36:\left( {5 - 2} \right).2 = 24\left( {cm} \right)\)
Chu vi tam giác \(DEF\) là:
\(36:\left( {5 - 2} \right).5 = 60\left( {cm} \right)\)
Vậy chu vi tam giác \(ABC\) là 24cm; chu vi tam giác \(DEF\) là 60cm.

Vậy tỉ số chu vi của hai tam giác đồng dạng này cũng là 5, còn nếu là chu vi thì bình phương tỉ số lên

6.)
Khi 2 tam giác đồng dạng với nhau thì cạnh nhỏ nhất của tam giác này sẽ tương ứng với cạnh nhỏ nhất của tam giác kia.
Theo đề:\(A'B'\)=4,5
Ta có:\(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)
\(\Rightarrow\)\(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)
\(\Rightarrow\)\(B'C'=7,5cm,C'A'=10,5cm\)
ΔDEF đồng dạng với ΔHIK theo tỉ số k=1/5
nên \(\dfrac{P_{DEF}}{P_{HIK}}=\dfrac{1}{5}\)
=>\(P_{DEF}=\dfrac{1}{5}\cdot P_{HIK}\)
mà \(2\cdot P_{DEF}+3\cdot P_{HIK}=374\)
nên \(P_{DEF}=22;P_{HIK}=110\)
=>\(C_{DEF}=44;C_{HIK}=220\)