Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
ta có
A + B+ C = \(180^0\)
B + C = \(180^0\)- A
mà BI là phân giác góc B
IBC = \(\frac{1}{2}\)B
CI là phân giác góc C
ICB = \(\frac{1}{2}\)C
suy ra
IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)( \(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)= \(60^0\)
mà IBC + ICB + BIC = \(180^0\)
suy ra BIC = \(180^0\)- ( IBC + ICB )
BIC = \(180^0\)- \(60^0\)
BIC = \(120^0\)
b,
ta có vì I là giao điểm của phân giác góc B và C
suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC
nên IE = ID = IF
c,
ta có EIB + BIC =\(180^0\)
EIB = \(180^0-120^0\)
EIB = \(60^0\)
Mà EIB đối đỉnh góc DIC
suy ra DIC = EIB = \(60^0\)
vì IF là tia phân giác góc BIC
nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)= \(60^0\)
EIF = BIE + BIF = \(60^0+60^0=120^0\)
DIF = DIC + CIF = \(60^0+60^0=120^0\)
xét tam giác EIF và DIF có
EIF = DIF = \(120^0\)
IF là cạnh chung
IE = ID
suy ra tam giác EIF = tam giác DIF ( c-g-c )
suy ra EF = DF
ta có góc BIC đối đỉnh góc EID
nên BIC = EID = \(120^0\)
xét tam giác EIF và EID có
EID = EIF =\(120^0\)
ID = IF
IE cạnh chung
suy ra tam giác DIE = tam giác FIE ( c-g-c )
suy ra ED = EF
mà EF = DF
suy ra ED = EF = DF
suy ra tam giác EDF là tam giác đều
d,
ta có IE = IF = ID
nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF
mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó
suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF
góc DFE=180-60-70=50 độ
=>góc DFK=góc EFK=50/2=25 độ
góc DKF=góc KEF+góc KFE=70+25=95 độ
góc EKF=180-95=85 độ
ta có góc G + góc E = 180 - 56 = 1240 (tính chất tổng 3 góc trong tam giác)
mặt khác góc G1 + góc G2 = 1/2 (góc G + góc E) = 124: 2 = 620
xét tam giác EGL có góc GLH là góc ngoài của tam giác nên góc GLH = góc G1 + góc E1 = 620
Bài làm
a) Ta có: \(\widehat{PEF}+\widehat{PED}=\widehat{DEF}\)
Mà \(\widehat{PEF}=\widehat{PED}\)( Do EP là tia phân giác )
=> \(\widehat{PEF}+\widehat{PED}=\widehat{DEF}\)
=> \(\widehat{OEF}+\widehat{OED}=\widehat{DEF}\)
hay \(2.\widehat{OEF}=\widehat{DEF}\)
Lại có: \(\widehat{DFQ}+\widehat{QFE}=\widehat{DFE}\)
Mà \(\widehat{DFO}=\widehat{OFE}\)( QF là tia phân giác của góc F )
=> \(\widehat{DFQ}+\widehat{QFE}=\widehat{DFE}\)
hay \(\widehat{2DFO}=\widehat{DFE}\)
Xét tam giác DEF có:
\(\widehat{D}+\widehat{DEF}+\widehat{DFE}=180^0\)( Tổng ba góc trong tam giác )
hay \(60^0+2\widehat{OEF}+2\widehat{OFE}=180^0\)
=> \(2\left(\widehat{OEF}+\widehat{OFE}\right)=180^0-60^0\)
=> \(2\left(\widehat{OEF}+\widehat{OFE}\right)=120^0\)
=> \(\widehat{OEF}+\widehat{OFE}=120^0:2\)
=> \(\widehat{OEF}+\widehat{OFE}=60^0\)
Xét tam giác OEF có:
\(\widehat{OEF}+\widehat{OFE}+\widehat{EOF}=180^0\)
hay \(60^0+\widehat{EOF}=180^0\)
=> \(\widehat{EOF}=180^0-60^0=120^0\)
Vậy \(\widehat{EOF}=120^0\)
Xét tam giác DEF có:
EP là tia phân giác của góc E
FQ là tia phân giác của góc F
Mà hai tia phân giác này cắt nhau ở O
=> O là tâm của đường tròn nội tiếp tam giác.
=> OQ = OP
b) Để hai điểm P và Q cách đều đường thẳng EF của tam giác DEF <=> EQ = PF
# Học tốt #
a: \(\widehat{E}=35^0\)
Xét ΔDEF có \(\widehat{E}< \widehat{F}< \widehat{D}\)
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
\(\widehat{DEH}=\widehat{KEH}\)
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
hay ΔHDK cân tại H
a: ˆE=350E^=350
Xét ΔDEF có ˆE<ˆF<ˆDE^<F^<D^
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
ˆDEH=ˆKEHDEH^=KEH^
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
góc ABC+góc ACB=180-60=120 độ
=>góc IBC+góc ICB=60 độ
=>góc EIC=60 độ
Góc DKE = 60 o