Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
Ta có: Có DH _l_ EF (gt)
=> H là hình chiếu của D
mà DE < DF (gt)
=> HE < HF (quan hệ đường xiên hình chiếu)
2. Vì HE < HF (từ 1)
=> ME < MF (quan hệ đx, hình chiếu)
3. Xét ΔDHEΔDHE và ΔDHFΔDHF có:
DH: chung
H1ˆ=H2ˆ=90o(gt)H1^=H2^=90o(gt)
nhưng HE < HF (từ 1)
=> HDEˆ<HDFˆHDE^<HDF^ (vì HDEˆHDE^ đối diện với HE; HDFˆHDF^ đối diện với HF)
b. Vì HE < HF ⇒ ME < MF ( quan hệ giữa hình chiếu và đường xiên) (1 điểm)
a. Vì DE < DF ⇒ HE < HF(quan hệ giữa hình chiếu và đường xiên) (1 điểm)
a: DE>DF
=>góc F>góc E
b: Xét ΔDEF có DE>DF
mà ME,MF lần lượt là hình chiếu của DE,DF trên EF
nên ME>MF
c; DF=căn 7^2+12^2=căn 193(cm)
a: \(\widehat{E}=35^0\)
Xét ΔDEF có \(\widehat{E}< \widehat{F}< \widehat{D}\)
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
\(\widehat{DEH}=\widehat{KEH}\)
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
hay ΔHDK cân tại H
a: ˆE=350E^=350
Xét ΔDEF có ˆE<ˆF<ˆDE^<F^<D^
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
ˆDEH=ˆKEHDEH^=KEH^
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
a) Có DE < DF( 5cm < 12cm)
->góc F< góc E
b) áp dụng đl pytago:
EF^2=DE^2+DF^2=5^2+12^2=169
= > EF=13 (cm)
tam giác DEF có DM là trung tuyến(M là trung điểm của EF) ứng với cạnh huyền
=> DM=EM=MF=EF/2=13/2=6,5cm
Khó vãi!!! Nghỉ ở nhà bây giờ ko nhớ tí kiến thức gì lun!!! Chắc phải mơ sách giáo khoa ra rùi tự nghiên cứu lại thui!!!