Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác EAD và tam giác FAD có
AED=AFD=90*
EAD=FAD(gt)
AD chung
=> tam giác EAD= tam giác FAD(ch-gn)
=> DE=DF( 2 cạnh t.ứ) và EDA=FDA( 2 góc t,ứ)
Ta có EDA=FDA=30*=>EDF=EDA+FDA=30*+30*=60*
b. Tam giác EAD=tam giác FAD(ch-gn=>AE=AF
Mà KE=FI => AE+EK=AF+FI => AK=AI
Xét tam giác AKD và tam giác AID
AK=AI; KAD=IAK; AD chung
=> tam giác AKD= tam giác AID(cgc)
=> DK=DI
c. Ta có BAC+CAM=180*( kề bù)
=> 120* + CAM=180* => CAM= 60*
Lại có AD//MC=> DAC=ACM= 1/2BAC= 60*
Xét tam giác ACM có ACM= CAM=60*=> tam giác ACM đều => ACM=CAM=AMC=60*
a: \(\widehat{E}=35^0\)
Xét ΔDEF có \(\widehat{E}< \widehat{F}< \widehat{D}\)
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
\(\widehat{DEH}=\widehat{KEH}\)
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
hay ΔHDK cân tại H
a: ˆE=350E^=350
Xét ΔDEF có ˆE<ˆF<ˆDE^<F^<D^
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
ˆDEH=ˆKEHDEH^=KEH^
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
\(\widehat{B}=\widehat{E}=65^0\)
\(\widehat{C}=\widehat{F}=55^0\)
\(\widehat{A}=\widehat{D}=60^0\)
a,VÌ AD là p/g của ^A nên ^EAD = ^IAD = \(\frac{1}{2}\)^ EAI = \(\frac{1}{2}\cdot60^o=30^o\)
Xét tam giác vuông EAD và tam giác vuông IAD ta có: ^EAD = ^IAD ; chung AD
Nên tam giác vuông AED = tam giác vuông IAD (cạnh huỳen - góc nhọn)
do đó DE = DF (2 cạnh tương ứng) nên tam giác DEF cân tại D \(\left(1\right)\)
Do đó ^ADE = ^IDA =\(30^o\)mà ^EDI = ^ADE + ^IDA = \(30^o+30^o=60^o\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)-> tam giác DEF đều. (ĐPCM)
b, Xét tam giác vuông DEF và tam giác vuông DEI, ta có: DE = DF ; KE = FI
nên tam giác vuông DEF = tam giác vuông DEI (2 cạnh góc vuông)
do đó DK = DI (2 cạnh tương ứng)
Nên tam giác DKI cân tại D (ĐPCM)
https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc
a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)
Mặt khác dễ dàng chứng minh được EDFˆ=60o
Vì vậy tam giác DEF là tam giác đều
b)ΔEDK=ΔFDT(hai cạnh góc vuông)
nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D
c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o
AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)
AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)
Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều
d)Ta có AF=AC-FC=CM-FC=m-n.
ˆA=12A^=12 sđ BCBC⏜ (tính chất góc nội tiếp)
⇒⇒ sđ BCBC⏜ =2ˆA=2.320=640=2A^=2.320=640
BC = BE (gt)
⇒⇒ sđ BCBC⏜ = sđ BEBE⏜ = 640
ˆB=12B^=12 sđ ACAC⏜ (tính chất góc nội tiếp)
⇒⇒ sđ ACAC⏜ =2ˆB=2.840=1680=2B^=2.840=1680
AC = CF (gt)
⇒⇒ sđ CFCF⏜ = sđ ACAC⏜ = 1680
sđ ACAC⏜ + sđ AFAF⏜ + sđ CFCF⏜ = 3600
⇒⇒ sđ AFAF⏜ =3600–=3600– sđ ACAC⏜ – sđ CFCF⏜ = 3600 – 1680. 2 = 240
Trong ∆ABC ta có: ˆA+ˆB+ˆC=1800A^+B^+C^=1800
Bài 1:
Số đo góc ngoài tại đỉnh C là \(74^0+47^0=121^0\)
Câu 2:
Đặt \(\widehat{D}=a;\widehat{E}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=52\\a+b=140\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=96\\b=44\end{matrix}\right.\)
Bài 3:
Theo đề, ta có: x+2x+3x=180
=>6x=180
=>x=30
=>\(\widehat{A}=30^0;\widehat{B}=60^0;\widehat{C}=90^0\)
Đề bài chưa đầy đủ, mình sẽ phản hồi lại khi có đủ đề bài. (Cụ thể hơn, giao điểm của DI và EK là gì? Có thể chụp hình vẽ lên không vậy bạn?