K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

Xét tam giác $DEH$ và $DFH$ có:

$DE=DF$ có $DEF$ cân tại $D$

$DH$ chung

$\widehat{DHE}=\widehat{DHF}=90^0$

$\Rightarrow \triangle DEH=\triangle DFH$ (ch-cgv)

$\Rightarrow EH=FH$

Xét tam giác $MHE$ và $MHF$ có:

$\widehat{MHE}=\widehat{MHF}=90^0$

$MH$ chung

$EH=FH$ (cmt)

$\Rightarrow \triangle MHE=\triangle MHF$ (c.g.c)

$\Rightarrow ME=MF$

 

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Hình vẽ:

undefined

17 tháng 5 2016

a) Xét tam giác DAB và tam giác DHB:

góc DAB= góc DHB =90o

DB chung

góc DBA= góc DBH

=> tam giác DAB = tam giác DHB (cạnh huyền _góc nhọn)

=> DA=DH (2 cạnh tương ứng)

b) 

Ta có: DA = DH (cmt)            (1)

và trong tam giác CHD :

DH là cạnh góc vuông

DC là cạnh huyền 

=>  DH < DC                         (2)

Từ (1) và (2) =>  AD < DH

c) Xét tam giác DAK và tam giác DHC:

góc DAK = góc DHC = 90o

DA = DH (cmt)

góc KDA = góc CDH (đối đỉnh)

=> tam giác DAK = tam giác DHC (cạnh góc vuông_ góc nhọn)

=> AK = HC (2 cạnh tương ứng)

Ta có: AB = HB (do tam giác DAB = tam giác DHB)

và AK = HC (cmt)

mà BK = AB + AK

      BC = HB + HC

=>  BK = BC 

=> tam giác KBC cân

18 tháng 5 2016

Cô nêu cách trình bày khác của câu c nhé. :)

Xét tam giác KBC, có KH, CK là các đường cao nên D là trực tâm của tam giác KBC. Từ đó suy ra BD là đường cao của tam giác KBC. Mà BD lại là đường phân giác nên tam giác KBC cân tại B.

a: Xet ΔDME và ΔDNF có

DM=DN

góc MDE chung

DE=DF

=>ΔDME=ΔDNF

=>EM=FN và góc DEM=góc DFN

b: Xet ΔNEF và ΔMFE có

NE=MF

EF chung

NF=ME

=>ΔNEF=ΔMFE
=>góc KEF=góc KFE

=>KE=KF

c: ΔDEF cân tại D

mà DH là đường cao

nên DH là trung tuyến

Xét ΔDEF có 

DH,FN,EM là trung tuyến

=>DH,FN,EM đồng quy

a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:

\(EF^2=DE^2+DF^2\)

\(\Leftrightarrow EF^2=9^2+12^2=225\)

hay EF=15(cm)

Vậy: EF=15cm

30 tháng 3 2021

a) Xét tam giác EDF có: EF2 = DE2 + DF(đ/lí py-ta-go)

                                         =>  EF= 9+ 122

                                                 =>  EF2 = 81 + 144 = 225

                                         =>  EF = 112,5 cm

\(\text{#TNam}\)

`a,` Xét Tam giác `HED` và Tam giác `HFD` có

`DE = DF (\text {Tam giác DEF cân tại D})`

\(\widehat{E}=\widehat{F}\) `(\text {Tam giác DEF cân tại D})`

`=> \text {Tam giác HED = Tam giác HDF (ch-gn)}`

`b,` Vì Tam giác `HED =` Tam giác `HFD (a)`

`-> HE = HF (\text {2 cạnh tương ứng})`

Xét Tam giác `HEM` và Tam giác `HFN` có:

`HE = HF (CMT)`

\(\widehat{E}=\widehat{F}\) `(a)`

\(\widehat{EMH}=\widehat{FNH}=90^0\)

`=> \text {Tam giác HEM = Tam giác HFN (ch-gn)}`

`-> EM = FN (\text {2 cạnh tương ứng})`

Ta có: \(\left\{{}\begin{matrix}DE=MD+ME\\DF=ND+NF\end{matrix}\right.\)

Mà `DE = DF, ME = NF`

`-> MD = ND`

Xét Tam giác `DMN: DM = DN (CMT)`

`-> \text {Tam giác DMN cân tại D}`

`->`\(\widehat{DMN}=\widehat{DNM}=\)\(\dfrac{180-\widehat{A}}{2}\)

Tam giác `DEF` cân tại `D`

`->`\(\widehat{E}=\widehat{F}=\)\(\dfrac{180-\widehat{A}}{2}\)

`->`\(\widehat{DMN}=\widehat{E}\)

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {MN // EF (t/c 2 đt' //)}`

loading...

 

14 tháng 4 2020

a) Xét tam giác DEH và tam giác DFH ta có:

        DE = DF ( tam giác DEF cân tại D )

        DEH = DFH ( tam giác DEF cân tại D )

        EH = EF ( H là trung điểm của EF )

=> tam giác DEH = tam giác DFH ( c.g.c) (dpcm)

=> DHE=DHF(hai góc tương ứng)

Mà DHE+DHF=180 độ  =>DHE=DHF=180 độ / 2 = 90 độ ( góc vuông ) hay DH vuông góc với EF ( dpcm )

 b) Xét tam giác MEH và tam giac NFH ta có:

          EH=FH(theo a)

          MEH=NFH(theo a)

  => tam giác MEH = tam giác NFH ( ch-gn)

  => HM=HN ( 2 cạnh tương ứng ) hay tam giác HMN cân tại H ( dpcm )

c) Ta có : +) DM+ME=DE =>DM=DE-ME

                +) DN+NF=DF => DN=DF-NF

Mà DE=DF(theo a)   ;     ME=NF( theo b tam giác MEH=tam giác NFH)

=>DM=DN => tam giác DMN cân tại D 

Xét tam giac cân DMN ta có:

     DMN=DNM=180-MDN/2      (*)

Xét tam giác cân DEF ta có:

     DEF=DFE =180-MDN/2       (*)

Từ (*) và (*) Suy ra góc DMN = góc DEF

Mà DMN và DEF ở vị trí đồng vị

=> MN//EF (dpcm)

d) Xét tam giác DEK và tam giác DFK ta có:

        DK là cạnh chung

        DE=DF(theo a)

    => tam giác DEK= tam giác DFK(ch-cgv)

   =>DKE=DKF(2 góc tương ứng)

   =>DK là tia phân giác của góc EDF       (1)

Theo a tam giac DEH= tam giac DFH(c.g.c)

   =>EDH=FDH(2 góc tương ứng)

   =>DH là tia phân giác của góc EDF        (2)

Từ (1) và (2) Suy ra D,H,K thẳng hàng (dpcm)

a: góc MDH=90 độ-góc DMH

=90 độ-2*góc MDF

=90 độ-2*góc E

=góc F+góc E-2*góc E

=góc F-gócE

b: (EF+DH)^2-(DF+DE)^2

=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE

=DH^2>0

=>EF+DH>DF+DE
=>EF-DE>DF-DH

a: Ta có: ΔDEF cân tại D

mà DH là đường cao

nên H là trung điểm của EF

hay EH=FH

b: EH=FH=EF/2=3(cm)

Xét ΔDHE vuông tại H có \(DE^2=DH^2+HE^2\)

nên DH=4(cm)

c: Xét ΔDEM và ΔDFN có

DE=DF

\(\widehat{EDM}\) chung

DM=DN

Do đó: ΔDEM=ΔDFN

Suy ra: \(\widehat{DEM}=\widehat{DFN}\)

d: Xét ΔNEH và ΔMFH có 

NE=MF

\(\widehat{E}=\widehat{F}\)

EH=FH

Do đó: ΔNEH=ΔMFH

Suy ra: HN=HM

hay H nằm trên đường trung trực của MN(1)

Ta có: KM=KN

nên K nằm trên đường trung trực của MN(2)

Ta có: DN=DM

nên D nằm trên đường trung trực của MN(3)

Từ (1), (2) và (3) suy ra D,H,K thẳng hàng

14 tháng 2 2022

a. xét tam giác DHE và tam giác DHF, có:

D: góc chung

DE = DF ( DEF cân )

DH: cạnh chung

Vậy tam giác DHE = tam giác DHF ( c.g.c )

=> HE = HF ( 2 cạnh tương ứng )

b.ta có: EH = EF :2 ( EF là đường cao cũng là trung tuyến ) = 6 : 2 =3 cm

áp dụng định lý pitago vào tam giác vuông DHE, có:

\(DE^2=DH^2+EH^2\)

\(\Rightarrow DH=\sqrt{DE^2-EH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)

c.xét tam giác DEM và tam giác DFN có:

DE = DF ( DEF cân )

DM = DN ( gt )

D: góc chung

Vậy tam giác DEM = tam giác DFN ( c.g.c )

=> góc DEM = góc DFN ( 2 góc tương ứng )

d.xét tam giác DKM và tam giác DKN, có:

DM = DN ( gt )

D: góc chung

DK: cạnh chung

Vậy tam giác DKM = tam giác DKN ( c.g.c )

=> góc DKM = góc DKN = 90 độ ( tam giác BNM cân, K là trung điểm cũng là đường cao )

=> DK vuông BC

Mà DH cũng vuông BC

=> D,H,K thẳng hàng

Chúc bạn học tốt!!!