Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: giống bài vừa nãy t làm cho bạn rồi!
Câu 2:
vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)
Câu 3 :
sửa đề chút nha : EF là tia phân giác góc DEH
ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)
mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)
=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)
a) Gọi H là giao điểm đường trung trực của EF và EF
Xét Δ KEF có :
KH là đường trung trực của EF
⇒ KH vừa là đường cao, trung tuyến của Δ KEF
⇒ Δ KEF là tam giác cân tại K
b) Xét Δ vuông DEF có :
\(\widehat{DEF}+\widehat{DFE}=90^o\)
\(\Rightarrow\widehat{DEF}=90^o-\widehat{DFE}\)
\(\Rightarrow\widehat{DEF}=90^o-40^o\)
\(\Rightarrow\widehat{DEF}=50^o\)
mà \(\widehat{DEK}+\widehat{KEF}=\widehat{DEF}\)
\(\widehat{KEF}=\widehat{DFE}=40^o\) (Δ KEF là tam giác cân tại K)
\(\Rightarrow\widehat{DEK}=\widehat{DEF}-\widehat{KEF}=50^o-40^o=10^o\)
A B C F E H
a, Xét \(\Delta AEB\)và \(\Delta AFC\)có :
\(+,\widehat{A}\)chung
\(+,AB=AC\)( \(\Delta ABC\)cân tại A )
\(+,\widehat{ABE}=\widehat{ACE}\left(\widehat{AEB}=\widehat{AFC}=90^0\right)\)
\(\Rightarrow\Delta AEB=\Delta AFC\)
b, \(\Delta AEB=\Delta AFC\left(cmt\right)\)
\(\Rightarrow AF=AE\)
Xét \(\Delta AEH\)và \(\Delta AFH\)có :
\(+,\widehat{AFH}=\widehat{AEH}=90^0\)
\(+,AF=AE\) \(\hept{\begin{cases}\\\Rightarrow\Delta AFH=\Delta\\\end{cases}AEH\left(c.c.c\right)}\)
\(+,AH\)chung
\(\Rightarrow\widehat{FAH}=\widehat{AEH}\)
\(\Rightarrow\)AH là tia phân giác của của góc \(\widehat{A}\)
Mặt khác \(\Delta ABC\)cân tại A
\(\Rightarrow AH\perp BC\)
c, Tự làm nhé ..
Bạn tự vẽ hình nha
a) +)Ta có \(\Delta DEF\)cân tại D (gt) nên DE=DF( suy ra từ khái niệm)
\(\widehat{E}=\widehat{F}\)(suy ra từ tính chất)
+) K là trung điểm của EF (gt) nên KE=KF
+) Xét \(\Delta DEK\) và \(\Delta DFK\)ta có:
DE=DF(cmt)
\(\widehat{E}=\widehat{F}\)(cmt)
KE=KF(cmt)
\(\Rightarrow\Delta DEK=\Delta DFK\left(c.g.c\right)\)
\(\Rightarrow\widehat{DKE}=\widehat{DKF}\)( hai góc tương ứng) (1)
Mặt khác \(\widehat{DKE}+\widehat{DKF}=180\)(2)
Từ (1) và (2) suy ra \(\widehat{DKE}=\widehat{DKF}=\frac{1}{2}180=90\)
\(\Rightarrow DK\perp EF\)(đpcm)
b) +)Vì KE + KF = EF = 24 cm
mà KE = KF (cmt)
\(\Rightarrow KE=KF=\frac{1}{2}24=12\)
+) Áp dụng định lí PYTAGO vào \(\Delta DEK\)vuông tại D có
\(DE^2=DK^2+KE^2\)
\(DK^2=DE^2-KE^2\)
hay\(DK^2=15^2-12^2\)
\(DK=81\)(đpcm)
Vậy chu vi \(\Delta DEK\)là
DE+DK+KE=15+81+12=108(cm)
bn tự vẽ hình nha
a) c1: nếu bn đã học tính chất: trong 1 tam giác cân đường cao đồng thời là phân giác, trung tuyến, trung trực
thì bn lm như sau:
vì k là trung điểm của ef =>dk là trung tuyến của tam giác def
mà tam giác def cân tại d => dk là đường cao của tam giác def
=>dk vuông góc với ef
a) c2 nêu bn chưa học tính chất trên thì bn làm như sau:
xét tam giác dke và tam giác dkf có: cạnh dk chung, de=df( tam giác def cân tại d), ke=kf( k là trung điểm của ef)
=> tam giác dke= tam giác dkf (c.c.c)
=> góc dke= góc dkf( 2 góc tương ứng)[ vt chữ góc lâu quá nên mk ko vt góc bn cx tự hiểu nha)
mà dke+dkf=180 ( 2 góc kề bù) => dke=dkf=90 độ
=> dk vuông góc với ef
b)vì k là trung điểm của ef => ke=kf=ef/2=24/2=12(cm)
vì dk vuông góc với ef (câu a)=> tam giác dke vuông tại k
=>\(de^2=dk^2+ek^2\Rightarrow dk^2=15^2-12^2=81\Rightarrow dk=9\)( vì de>0)
Chu vi tam giác dke là: 15+12+9=36(cm)
a: Xét ΔDEK và ΔDFK có
DE=DF
EK=FK
DK chung
Do đó: ΔDEK=ΔDFK
b: Ta có: ΔDEF cân tại D
nên \(\widehat{DEF}=\widehat{DFE}\)
c: Xét ΔDEF cân tại D có DK là đường trung tuyến
nên DK là đường cao
Xét ΔDEF có
DK là đường cao
EM là đường cao
DK cắt EM tại H
Do đó: H là trực tâm của ΔDEF
Xét ΔDEK và ΔDFK có
DE=DF
EK=FK
DK chung
=> ΔDEK=ΔDFK
Ta có ΔDEF cân tại D
=> \(\widehat{DEF}=\widehat{DFE}\)
Trong tam giác DEF cân tại D có
DK là đường trung tuyến
=> DF là đường cao
Trong ΔDEF có
DK là đường cao
EM là đường cao
DK cắt EM tại H
nên là trực tâm của ΔDEF