K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDEK và ΔDFK có

DE=DF

EK=FK

DK chung

Do đó: ΔDEK=ΔDFK

b: Ta có: ΔDEF cân tại D

nên \(\widehat{DEF}=\widehat{DFE}\)

c: Xét ΔDEF cân tại D có DK là đường trung tuyến

nên DK là đường cao

Xét ΔDEF có 

DK là đường cao

EM là đường cao

DK cắt EM tại H

Do đó: H là trực tâm của ΔDEF

18 tháng 5 2022

Xét ΔDEK và ΔDFK có

DE=DF

EK=FK

DK chung

=> ΔDEK=ΔDFK

 

Ta có ΔDEF cân tại D

=> \(\widehat{DEF}=\widehat{DFE}\)

 

Trong tam giác DEF cân tại D có

DK là đường trung tuyến 

=> DF là đường cao

Trong ΔDEF có 

DK là đường cao

EM là đường cao

DK cắt EM tại H

nên là trực tâm của ΔDEF

31 tháng 12 2017

Câu 1: giống bài vừa nãy t làm cho bạn rồi!

Câu 2:

vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)

Câu 3 :

sửa đề chút nha : EF là tia phân giác góc DEH

ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)

mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)

=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)

28 tháng 8 2023

a) Gọi H là giao điểm đường trung trực của EF và EF

Xét Δ KEF có :

KH là đường trung trực của EF

⇒ KH vừa là đường cao, trung tuyến của Δ KEF

⇒ Δ KEF là tam giác cân tại K

b) Xét Δ vuông DEF có :

\(\widehat{DEF}+\widehat{DFE}=90^o\)

\(\Rightarrow\widehat{DEF}=90^o-\widehat{DFE}\)

\(\Rightarrow\widehat{DEF}=90^o-40^o\)

\(\Rightarrow\widehat{DEF}=50^o\)

mà \(\widehat{DEK}+\widehat{KEF}=\widehat{DEF}\)

     \(\widehat{KEF}=\widehat{DFE}=40^o\) (Δ KEF là tam giác cân tại K)

\(\Rightarrow\widehat{DEK}=\widehat{DEF}-\widehat{KEF}=50^o-40^o=10^o\)

A B C F E H

a, Xét \(\Delta AEB\)và \(\Delta AFC\)có :

\(+,\widehat{A}\)chung

\(+,AB=AC\)\(\Delta ABC\)cân tại A )

\(+,\widehat{ABE}=\widehat{ACE}\left(\widehat{AEB}=\widehat{AFC}=90^0\right)\)

\(\Rightarrow\Delta AEB=\Delta AFC\)

b, \(\Delta AEB=\Delta AFC\left(cmt\right)\)

\(\Rightarrow AF=AE\)

Xét \(\Delta AEH\)và \(\Delta AFH\)có :

\(+,\widehat{AFH}=\widehat{AEH}=90^0\)

\(+,AF=AE\)                        \(\hept{\begin{cases}\\\Rightarrow\Delta AFH=\Delta\\\end{cases}AEH\left(c.c.c\right)}\)

\(+,AH\)chung

\(\Rightarrow\widehat{FAH}=\widehat{AEH}\)

\(\Rightarrow\)AH là tia phân giác của của góc \(\widehat{A}\)

Mặt khác \(\Delta ABC\)cân tại A

\(\Rightarrow AH\perp BC\)

c, Tự làm nhé ..

Bài tập:Bài 1: Cho D ABC cân tại A. Vẽ AH vuông góc với BC tại H, có AB = 5cm, BC = 6cm.1) Chứng minh hai tam giác ABH và ACH bằng nhau2) Tìm độ dài đoạn AH?c) Hãy cho biết trong tam giác trên AH là đường nào trong các đường sau: đường trung tuyến, đường cao, đường phân giác, đường trung trực? Bài 2:  Cho tam giác ABC cân tại A, gọi H là trung điểm của cạnh BC. Từ H vẽ HM vuông góc AB tại M, HN vuông...
Đọc tiếp

Bài tập:

Bài 1: Cho D ABC cân tại A. Vẽ AH vuông góc với BC tại H, có AB = 5cm, BC = 6cm.

1) Chứng minh hai tam giác ABH và ACH bằng nhau

2) Tìm độ dài đoạn AH?

c) Hãy cho biết trong tam giác trên AH là đường nào trong các đường sau: đường trung tuyến, đường cao, đường phân giác, đường trung trực?

 

Bài 2:  Cho tam giác ABC cân tại A, gọi H là trung điểm của cạnh BC. Từ H vẽ HM vuông góc AB tại M, HN vuông AC tại N.

a) Chứng minh hai tam giác ABH và ACH bằng nhau

b) Chứng minh HM = HN

c) Chứng minh AM = AN

d) AH có là đường trung trực của tam giác ABC hay không? Vì sao?

 

Bài 3: Cho tam giác ABC có ba góc nhọn, vẽ hai đường cao AD và BE cắt nhau tại H. Cho biết góc ACB = 50 độ.

a) Chứng minh CH vuông góc AB

b) Tính góc BHD và góc DHE?

 

Bài 4: Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B, trên tia BC lấy điểm E sao cho BA = BE, gọi H là giao điểm của AB với DE.

a) Chứng minh DE vuông góc BE

b) Chứng minh BD là đường trung trực của AE

c) Chứng minh AE song song với HC.

 

 

0
23 tháng 2 2018

Bạn tự vẽ hình nha

a) +)Ta có \(\Delta DEF\)cân tại D (gt) nên DE=DF( suy ra từ khái niệm)

                                                                \(\widehat{E}=\widehat{F}\)(suy ra từ tính chất)

+) K là trung điểm của EF (gt) nên KE=KF

+) Xét \(\Delta DEK\) và \(\Delta DFK\)ta có:

   DE=DF(cmt)

   \(\widehat{E}=\widehat{F}\)(cmt)

    KE=KF(cmt)

\(\Rightarrow\Delta DEK=\Delta DFK\left(c.g.c\right)\)

\(\Rightarrow\widehat{DKE}=\widehat{DKF}\)( hai góc tương ứng)  (1)

Mặt khác \(\widehat{DKE}+\widehat{DKF}=180\)(2)

Từ (1) và (2) suy ra \(\widehat{DKE}=\widehat{DKF}=\frac{1}{2}180=90\)

\(\Rightarrow DK\perp EF\)(đpcm)

b) +)Vì KE + KF = EF = 24 cm

mà  KE = KF (cmt) 

\(\Rightarrow KE=KF=\frac{1}{2}24=12\)

+) Áp dụng định lí PYTAGO vào \(\Delta DEK\)vuông tại D có

\(DE^2=DK^2+KE^2\)

\(DK^2=DE^2-KE^2\)

hay\(DK^2=15^2-12^2\)

\(DK=81\)(đpcm)

Vậy chu vi \(\Delta DEK\)là 

DE+DK+KE=15+81+12=108(cm)

23 tháng 2 2018

bn tự vẽ hình nha

a)  c1: nếu bn đã học tính chất: trong 1 tam giác cân đường cao đồng thời là phân giác, trung tuyến, trung trực

thì bn lm như sau:

vì k là trung điểm của ef =>dk là trung tuyến của tam giác def

mà tam giác def cân tại d => dk là đường cao của tam giác def

=>dk vuông góc với ef

a) c2 nêu bn chưa học tính chất trên thì bn làm như sau:

xét tam giác dke và tam giác dkf có: cạnh dk chung, de=df( tam giác def cân tại d), ke=kf( k là trung điểm của ef)

=> tam giác dke= tam giác dkf (c.c.c)

=> góc dke= góc dkf( 2 góc tương ứng)[ vt chữ góc lâu quá nên mk ko vt góc bn cx tự hiểu nha)

mà dke+dkf=180 ( 2 góc kề bù) => dke=dkf=90 độ

=> dk vuông góc với ef

b)vì k là trung điểm của ef => ke=kf=ef/2=24/2=12(cm)

vì dk vuông góc với ef (câu a)=> tam giác dke vuông tại k

=>\(de^2=dk^2+ek^2\Rightarrow dk^2=15^2-12^2=81\Rightarrow dk=9\)( vì de>0)

Chu vi tam giác dke là: 15+12+9=36(cm)