\(\frac{a+b+c}{2}\) với a,b,c là độ dài 3 cạnh 

Chứng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2018

2.

a, Có : (a+b+c).(1/a+1/b+1/c)

>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)

   = 9

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

12 tháng 3 2018

2.

b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )

<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2

<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2

<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

12 tháng 2 2016

Ta có:  \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)   \(\left(\text{*}\right)\) , với  \(a,b>0\)  (vì  

Thật vậy, áp dụng bất đẳng thức Cô-si cho hai số dương  \(a,b>0\), ta được:

\(a+b\ge2\sqrt{ab}\)   và  \(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}.\frac{1}{b}}=\frac{2}{\sqrt{ab}}\)

Do đó,  \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)  \(\Leftrightarrow\)  \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b\)

Vậy, bất đẳng thức  \(\left(\text{*}\right)\)  đã được chứng minh.

                                                               \(----------------------\)

Vì  \(a,b,c,p\)  lần lượt là độ dài ba cạnh và nửa chu vi của tam giác nên \(a,b,c,p>0\)

Áp dụng  bất đẳng thức \(\left(\text{*}\right)\)  với  \(p-a,\)  \(p-b,\)  \(p-c\)  là các số dương, ta có:

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{\left(p-a+p-b\right)}=\frac{4}{\left(2p-a-b\right)}=\frac{4}{c}\)  \(\left(1\right)\)

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{\left(p-b+p-c\right)}=\frac{4}{\left(2p-b-c\right)}=\frac{4}{a}\)  \(\left(2\right)\)

\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{\left(p-c+p-a\right)}=\frac{4}{\left(2p-c-a\right)}=\frac{4}{b}\)  \(\left(3\right)\)

Cộng  \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right)\)  lần lượt vế theo vế, ta được:

\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\)  \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)  

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(p-a=p-b=p-c\), tức là  \(a=b=c\)  hay tam giác đã cho là tam giác đều (vì có 3 cạnh bằng nhau).

5 tháng 7 2018

Ta có: \(a+b+c=2p\Rightarrow p=\frac{a+b+c}{2}\)

\(\Rightarrow\hept{\begin{cases}p-a=\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\\p-b=\frac{a+b+c}{2}-b=\frac{a+c-b}{2}\\p-c=\frac{a+b+c}{2}-c=\frac{a+b-c}{2}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{1}{p-a}=\frac{2}{b+c-a}\\\frac{1}{p-b}=\frac{2}{a+c-b}\\\frac{1}{p-c}=\frac{2}{a+b-c}\end{cases}}\)

\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}=\frac{2}{b+c-a}+\frac{2}{a+c-b}+\frac{2}{a+b-c}=2\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)

Áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)  ta có:

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(1\right)\)

Tương tự, ta cũng có: \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\left(2\right);\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\left(3\right)\)

Cộng (1),(2),(3) vế theo vế ta được:

\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra khi a = b = c

5 tháng 7 2018

sửa dòng 2

\(\Rightarrow\hept{\begin{cases}p-a=\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\\p-b=\frac{a+b+c}{2}-b=\frac{a+c-b}{2}\\p-c=\frac{a+b+c}{2}-c=\frac{a+b-c}{2}\end{cases}}\)

Link https://lazi.vn/edu/exercise/cho-a-b-c-la-do-dai-3-canh-cua-mot-tam-giac-va-p-la-nua-chu-vi-chung-minh-1-p-a-1-p-b-1-p-c-21-a-a-b-1-c

11 tháng 8 2016

Áp dụng bđt \(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{x+y+z}\)

được : \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{\left(1+1+1\right)^2}{a+b-c+b+c-a+c+a-b}\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)

11 tháng 8 2016

công thức 

\(\frac{m^2}{x}+\frac{n^2}{y}+\frac{p^2}{z}\ge\frac{\left(m+n+p\right)^2}{a+y+z}\) 

chứng minh thế nào