K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Trường hợp hình 46: cạnh lớn trong hai cạnh còn lại được kí hiệu là x.

ΔHAB cân vì có ∠B = 45o

=> HA = HB = 20

Áp dụng định lí Pitago trong ΔHAC có:

x2 = AC2 = HA2 + HC2 = 202 + 212 = 841

=> x = 29 hay độ dài cạnh lớn trong hai cạnh còn lại là 29.

QUẢNG CÁO

Trường hợp hình 47: cạnh lớn trong hai cạnh còn lại được kí hiệu là y.

ΔH'A'B' cân vì có ∠B' = 45o

=> H'A' = H'B' = 21

Áp dụng định lí Pitago trong ΔH'A'B' có:

y2 = A'B'2 = H'A'2 + H'B'2 = 212 + 212 = 2.212

=> y = 21√2 ≈ 29,7 hay độ dài cạnh lớn trong hai cạnh còn lại là 29,7.

15 tháng 6 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

- Trường hợp hình 46: cạnh lớn trong hai cạnh còn lại được kí hiệu là x.

ΔHAB cân vì có  ∠ B   =   45 °

=> HA = HB = 20

Áp dụng định lí Pitago trong ΔHAC có:

x 2   =   A C 2   =   H A 2   +   H C 2   =   20 2   +   21 2   =   841

=> x = 29 hay độ dài cạnh lớn trong hai cạnh còn lại là 29.

- Trường hợp hình 47: cạnh lớn trong hai cạnh còn lại được kí hiệu là y.

ΔH'A'B' cân vì có  ∠ B '   =   45 °

=> H'A' = H'B' = 21

Áp dụng định lí Pitago trong ΔH'A'B' có:

y 2   =   A ' B ' 2   =   H ' A ' 2   +   H ' B ' 2   =   21 2   +   21 2   =   2 . 21 2

=> y = 21√2 ≈ 29,7 hay độ dài cạnh lớn trong hai cạnh còn lại là 29,7.

24 tháng 4 2017

Xét hình a.Cạnh lớn trong hai cạnh còn lại là cạnh đối diện với góc 45o. Gọi cạnh đó là x. Ta có

Để học tốt Toán 9 | Giải bài tập Toán 9

Xét hình b. Cạnh lớn trong hai cạnh là cạnh kề với góc 45o. Gọi cạnh đó là y. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

24 tháng 4 2017

Xét hình a.Cạnh lớn trong hai cạnh còn lại là cạnh đối diện với góc 45o. Gọi cạnh đó là x. Ta có

Để học tốt Toán 9 | Giải bài tập Toán 9

Xét hình b. Cạnh lớn trong hai cạnh là cạnh kề với góc 45o. Gọi cạnh đó là y. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

17 tháng 3 2017

Xét tam giác ABC vuông tại A với AB > AC, gọi AH là đường cao kẻ từ A thì ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

15 tháng 6 2015

Đặt \(\frac{AB}{BC}=\frac{3}{5}=x\Rightarrow AB=3x;BC=5x\)

Tam giác ABC vuông tại A, theo py ta go:

                           \(AB^2+AC^2=BC^2\Rightarrow9x^2+144=25x^2\Rightarrow16x^2=144\Leftrightarrow x^2=9\)

=> X = 3 ; AB = 3x = 3.3=9 ; BC= 5x = 5.3 = 15

TAm giac ABC vuông tại A theo hệ thức lượng 

                           AH.BC = AB.AC => AH=  (AB.AC)/BC =  (9.12)/15 = 7,2cm

                          AB^2 = BC . BH => BH = AB^2 /BC = 9^2/15 = 5,4

                          =>  HC = BC - HB = 15 - 5,4 = 9,6cm

VẬY AH = 7,2 ; BH = 5,4;CH = 9,6 

 

1 tháng 8 2018

Lm sao 16x^2=144 ra x^2=9 vậy bạn

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

20 tháng 9 2017

câu 2

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125 

Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*) 
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**) 
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0 
=> AB^2 = 5605. Vì AB > 0 => AB = 75 
AC = 4/3 x AC => AC = 100 

Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC. 
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có: 
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45 
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80

20 tháng 9 2017

(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5

9 tháng 9 2020

A C B H

có S AHB = AH.HB/2 = 54 (gt) => AH.HB = 108

S AHC = AH.HC/2 = 96 (gt) => AH.HC = 192

=> AH^2.HB.HC = 108.192 = 20736                                                                 (1)

tg ABC có ^A = 90 (gt) ; AH _|_ BC => AH^2 = HB.HC (đl)

=> AH^4 = AH^2.HB.HC    và (1)

=> AH^4 = 20736

=> AH = 12 do AH > 0

có AH.HB = 108 => HB = 9 

AH.HC = 192 => HC = 16

=> HB + HC = 9 + 16 = 25