\(45^0\). Đường cao chia một cạnh kề với góc đó thành các ph...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Xét hình a.Cạnh lớn trong hai cạnh còn lại là cạnh đối diện với góc 45o. Gọi cạnh đó là x. Ta có

Để học tốt Toán 9 | Giải bài tập Toán 9

Xét hình b. Cạnh lớn trong hai cạnh là cạnh kề với góc 45o. Gọi cạnh đó là y. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

24 tháng 4 2017

Xét hình a.Cạnh lớn trong hai cạnh còn lại là cạnh đối diện với góc 45o. Gọi cạnh đó là x. Ta có

Để học tốt Toán 9 | Giải bài tập Toán 9

Xét hình b. Cạnh lớn trong hai cạnh là cạnh kề với góc 45o. Gọi cạnh đó là y. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

15 tháng 6 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

- Trường hợp hình 46: cạnh lớn trong hai cạnh còn lại được kí hiệu là x.

ΔHAB cân vì có  ∠ B   =   45 °

=> HA = HB = 20

Áp dụng định lí Pitago trong ΔHAC có:

x 2   =   A C 2   =   H A 2   +   H C 2   =   20 2   +   21 2   =   841

=> x = 29 hay độ dài cạnh lớn trong hai cạnh còn lại là 29.

- Trường hợp hình 47: cạnh lớn trong hai cạnh còn lại được kí hiệu là y.

ΔH'A'B' cân vì có  ∠ B '   =   45 °

=> H'A' = H'B' = 21

Áp dụng định lí Pitago trong ΔH'A'B' có:

y 2   =   A ' B ' 2   =   H ' A ' 2   +   H ' B ' 2   =   21 2   +   21 2   =   2 . 21 2

=> y = 21√2 ≈ 29,7 hay độ dài cạnh lớn trong hai cạnh còn lại là 29,7.

6 tháng 9 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Trường hợp hình 46: cạnh lớn trong hai cạnh còn lại được kí hiệu là x.

ΔHAB cân vì có ∠B = 45o

=> HA = HB = 20

Áp dụng định lí Pitago trong ΔHAC có:

x2 = AC2 = HA2 + HC2 = 202 + 212 = 841

=> x = 29 hay độ dài cạnh lớn trong hai cạnh còn lại là 29.

QUẢNG CÁO

Trường hợp hình 47: cạnh lớn trong hai cạnh còn lại được kí hiệu là y.

ΔH'A'B' cân vì có ∠B' = 45o

=> H'A' = H'B' = 21

Áp dụng định lí Pitago trong ΔH'A'B' có:

y2 = A'B'2 = H'A'2 + H'B'2 = 212 + 212 = 2.212

=> y = 21√2 ≈ 29,7 hay độ dài cạnh lớn trong hai cạnh còn lại là 29,7.

24 tháng 4 2017

Cách 1: Đặt tên các đoạn thẳng như hình bên.

Ta có:

.

Suy ra vuông tại A.

Áp dụng hệ thức h^{2}=b'c' ta có:

Cách 2:

Cũng chứng minh vuông như cách 1.

Áp dụng hệ thức ta được .



24 tháng 4 2017

2016-11-05_165411

Kí hiệu các điểm như hình vẽ
ta có OA = OB = OC = 1/2 BC
Tam giác ABC có trung tuyến AO bằng một nửa cạnh tương ứng BC nên nó là tam giác vuông tại đỉnh A, đường cao AH
Áp dụng định lí 2 ta có:
AH² = BH . CH => x² = a.b

24 tháng 4 2017

a) b = a sin α = a cos β
c = a sin β = a cos α

b) b = c tg α = c cotg β
c = b tg β = b cotg α

24 tháng 4 2017

a) b = asin α = acosβ; c = asinβ = acosα

b) b = c.tgβ = c.cotgα

 

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

b: XétΔADE vuông tại E có \(AE=AD\cdot\cos A\)

nên AE=5,16(cm)

AB=AE-BE=2,66(cm)

11 tháng 5 2017

đặt MA= x (cm)

tam giác ABC cân nên : 12-x

diện tích hình bình hành MNCP là : MP.MA = (12-x)x

diện tích bằng 32cm vuông , nê ta có phương trình:

x^2 -12x +32 = 0

giải pt ta được x1= 4 , x2 =8

vậy M cách A là 4cm hoặc 8cm.

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

24 tháng 4 2017

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

24 tháng 4 2017

hinh 36

a) p2 = q.p’ ; r2 = q.r’

b) 1/ h2 = 1/ p2 + 1/ r2

c) h2 =p’.r’