K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCHD vuông tại H và ΔCHF vuông tại H có

CD=CF

CH chung

Do đó: ΔCHD=ΔCHF

b: Ta có: ΔCHD=ΔCHF

nên HD=HF

c: Xét ΔCNH vuông tại N và ΔCMH vuông tại M có

CH chung

\(\widehat{NCH}=\widehat{MCH}\)

Do đó: ΔCNH=ΔCMH

Suy ra: CN=CM

hay ΔCNM cân tại C

12 tháng 6 2020

hình tự kẻ:33333

a) xét tam giác BAD và tam giác BHD có

B1=B2(gt)

BD chung

BAD=BHD(=90 độ)

=> tam giác BAD= tam giác BHD(ch-gnh)

=> AB=BH( hai cạnh tương ứng)

b) từ tam giác BAD =tam giácBHD=> AD=AH( hai cạnh tương ứng)

áp dụng điịnh lý pytago vào tam giác vuông HDC=> DC^2=DH^2+HC^2

=> DC^2>DH^2

=>DC^2>AD^2

=> DC>AD

c) xét tam giác BAC và tam giác BHKcó

AB=HB(cmt)

BAC=BHK(=90 độ)

B chung

=> tam giác BAC= tam giác BHK(gcg)

=> AK=AC( hai cạnh tương ứng)

=> tam giác BKC cân B

25 tháng 3 2017

\(a.\)Xét \(\Delta ABD\)vuông tại \(A\) và \(\Delta HBD\) vuông tại \(H\)
              có:   \(AD\): cạnh chung
                       \(\widehat{ABD}=\widehat{HBD}\)    ( vì \(AD\)là tia phân giác của \(\widehat{ABH}\))
      \(\Rightarrow\)\(\Delta ABD=\Delta HBD\) (cạnh huyền - góc nhọn)
      \(\Rightarrow\) \(AD=DH\) ( 2 cạnh tương ứng)

\(b.\) Xét \(\Delta DCH\)vuông tại \(H\)có:    \(DH< DC\)(vì trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
            mà \(AD=DH\)                \(\Rightarrow\)\(AD< DC\)(đpcm)

\(c.\)Xét \(\Delta KBH\)và \(\Delta CBA\)có:    \(\widehat{BHK}=\widehat{BAC}=90^0\)     ( gt )
                                                                       \(BH=AB\)                              ( vì \(\Delta ABD=\Delta HBD\))
                                                                        \(\widehat{KBH}\): góc chung                   ( gt )
                                \(\Rightarrow\)\(\Delta KBH=\Delta CBA\) (g.c.g)
                                \(\Rightarrow\)\(BK=BC\)(2 cạnh tương ứng)
                                \(\Rightarrow\)\(\Delta KBC\)cân  tại  \(B\)

4 tháng 4 2020

a) Có \(\Delta\)ABC cân tại A (gt), AD là phân giác \(\widehat{BAC}\)(D\(\in\)BC)

=> AD là đường phân giác của \(\Delta\)ABC

Mà trong tam giác cân đường phân giác trùng với đường trung tuyến

=> D là trung điểm của BC

=> DB=DC (đpcm)

b)  Xét hai tam giác vuông ΔAKD và ΔAKD 

Ta có: AD cạnh chung

\(\widehat{CAD}=\widehat{BAD}\left(gt\right)\)

\(\widehat{AHD}=\widehat{AKD}=90^o\)
Vậy ΔAKD=ΔAKD(cạnh huyền.góc nhọn)

Vậy DK=DH (cạnh tương ứng)

Nên ΔDHK cân

c. Do ΔAHK có AK=AH nên cân 

Vậy \(\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{KAH}}{2}\)

Do ΔABC cân nên \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{KAH}}{2}\)
Nên \(\widehat{AKH}=\widehat{ACB}\) mà hai góc trên ở vị trí đồng vị nên HK//BC

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

11 tháng 3 2015

a) Xét \(\Delta\)vuông BAD và \(\Delta\)vuông BHD có :

Góc BAD = góc BHD ( = 900 )

BD chung

Góc ABD = góc HBD ( BD là tia phân giác )

\(\Rightarrow\)\(\Delta\)BAD = \(\Delta\)BHD (cạnh huyền - góc nhọn )

\(\Rightarrow\)AD = DH ( cặp cạnh tương ứng )                   (1)

b) Xét tam giác DHC :

Góc DHC = 900 > góc C

\(\Rightarrow\)DC > DH ( quan hệ giữa góc và cạnh đối nhau )       (2)

Từ (1) , (2) \(\Rightarrow\)DC > AD

c) theo chứng minh câu a có :

Tam giác BAD = tam giác BHD

\(\Rightarrow\) BA = BC

Xét tam giác ADK và tam giác HDC có: 

Góc KAD = góc CHD ( = 900 )

AD = DH ( cm câu a)

Góc ADK = góc HDC ( đối đỉnh )

\(\Rightarrow\)tam giác ADK = tam giác HDC

\(\Rightarrow\)AK = HC ( cặp cạnh tương ứng )

Ta có :

BK = BA + AK 

BC = BH + HC

mà BA = BH ; AK = HC

\(\Rightarrow\)BK = BC

\(\Rightarrow\) tam giác KBC cân

 

20 tháng 4 2020

ADK VÀ HDC ko đối đỉnh nhé bạn

12 tháng 12 2017