K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2022

a: Xét tứ giác DIMN có

MI//DN

DI//MN

Do đó: DIMN là hình bình hành

b: Xét ΔCDE có IM//DE

nên CI/CD=CM/CE=1/2

=>I là trung điểm của DC

Xét ΔDCE có NM//CD

nên EN/ED=EM/EC=1/2

=>N là trung điểm của DE

Xét ΔDCE có

N,I lần lượt là trung điểm của DE,DC

nên NI là đường trung bình

=>NI//CE

a: Xét tứ giác BMNP có

BM//NP

NM//BP

Do đó: BMNP là hình bình hành

Xét ΔABC có

N là trung điểm của CA

NP//AB

Do đó: P là trung điểm của BC

b: Sửa đề; HB//AP

Xét ΔABC có

N là trung điểm của AC

NM//BC

Do đó: M là trung điểm của AB

Xét tứ giác AHBP có

M là trung điểm chung của AB và HP

=>AHBP là hình bình hành

 

29 tháng 6 2018

a) Xét\(\Delta BDE\)có:

  P là tđ DE 

Q là tđ EB

=> PQ là đường TB ,PQ//DB

CMTT=> MQ là đường TB=> MQ=\(\frac{1}{2}\)EC, MQ//EC

               MN là đường Tb=> MN=\(\frac{1}{2}\) DB,MN//DB

                PN là đường TB=> PN=\(\frac{1}{2}\)EC,PN//EC

Mà BD= CE( gt)=> MN=PQ=QM=NP=> MNPQ là hthoi

b) Kéo dài PM, cắt AC tại R,AB tại T

Do MNPQ là hthoi=>\(\widehat{BAC}=\widehat{QPN}\)( cặp góc t/ư)

mà \(\widehat{B\text{AF}}=\widehat{FAC}=\frac{1}{2}\widehat{BAC}\)

      \(\widehat{QPM}=\widehat{MPN}=\frac{1}{2}\widehat{QPN}\)

=>\(\widehat{BAF}=\widehat{FAC}=\widehat{QPM}=\widehat{MPN}\)(1)

mặt khác,PN//AC=>\(\widehat{MPN}=\widehat{MRC}\)(2)( 2 góc đ/v)

từ(1)(2)=>\(\widehat{MRC}=\widehat{FAC}\).. Mà 2 góc này đ/v

=>MP//AF

Pc mik chưa bt lm

a: Xet ΔBCD có

M,N lần lượtlà trung điểm của BC,CD

nên MN là đường trung bình

=>MN//BD và MN=BD/2

Xét ΔEBD có EP/ED=EQ/EB

nên PQ//BD và PQ/BD=EP/ED=1/2

=>MN//PQ và MN=PQ

Xét ΔDEC có DP/DE=DN/DC

nên PN//EC và PN=1/2EC

=>PN=1/2BD=PQ

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

PN=PQ

=>MNPQ là hình thoi

b: NP//AC

=>góc QPN=góc BAC

=>góc NMP=góc EAF

=>PM//AF

c: Xét ΔAIK có

AF vừa là đường cao, vừa là phân giác

nên ΔAIK cân tại A

28 tháng 8 2023

A B C E K H D M

a/

Ta có

\(\widehat{B}=\widehat{C}\) (góc ở đáy tg cân ABC)

EK//AB \(\Rightarrow\widehat{EKC}=\widehat{B}\) (góc đồng vị)

\(\Rightarrow\widehat{EKC}=\widehat{C}\) => tg EKC cân tại E => CE=EK

Mà AD=CE 

=> AD=EK (1)

Ta có

EK//AB => EK//AD (2)

Từ (1) và (2) => ADKE là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)

=> MA=MK; MD=ME (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

b/

Ta có \(H\in\left(M;MK\right)\) => MH=MK

Mà MK=MA (cmt) 

=> MH=MK=MA

=> tg MHK cân tại M \(\Rightarrow\widehat{MHK}=\widehat{MKH}\)

\(\widehat{HMK}+\widehat{MHK}+\widehat{MKH}=\widehat{HMK}+2\widehat{MHK}=180^o\)  (tổng các góc trong của 1 tg = 180 độ)

MH=MK=MA (cmt) => tg MAH cân tại M

\(\Rightarrow\widehat{MAH}=\widehat{MHA}\)

\(\widehat{HMK}=\widehat{MAH}+\widehat{MHA}\) (trong tg góc ngoài bằng tổng 2 góc trong không kề với nó)

\(\Rightarrow\widehat{HMK}=2\widehat{MHA}\)

Từ \(\widehat{HMK}+2\widehat{MHK}=180^o\Rightarrow2\widehat{MHA}+2\widehat{MHK}=180^o\)

\(\Rightarrow\widehat{MHA}+\widehat{MHK}=\widehat{AHK}=90^o\Rightarrow AH\perp BC\)

Xét tg vuông ABH và tg vuông ACH có

AH chung

AB=AC (cạnh bên tg cân ABC)

=> tg AHB = tg AHC (Hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau)

=> HB=HC

 

28 tháng 8 2023

Em cảm ơn ạ

 

11 tháng 12 2021

a: Xét tứ giác MNCP có 

MP//CN

MN//CP

Do đó: MNCP là hình bình hành