Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác DIMN có
MI//DN
DI//MN
Do đó: DIMN là hình bình hành
b: Xét ΔCDE có IM//DE
nên CI/CD=CM/CE=1/2
=>I là trung điểm của DC
Xét ΔDCE có NM//CD
nên EN/ED=EM/EC=1/2
=>N là trung điểm của DE
Xét ΔDCE có
N,I lần lượt là trung điểm của DE,DC
nên NI là đường trung bình
=>NI//CE
a: Xét tứ giác BMNP có
BM//NP
NM//BP
Do đó: BMNP là hình bình hành
Xét ΔABC có
N là trung điểm của CA
NP//AB
Do đó: P là trung điểm của BC
b: Sửa đề; HB//AP
Xét ΔABC có
N là trung điểm của AC
NM//BC
Do đó: M là trung điểm của AB
Xét tứ giác AHBP có
M là trung điểm chung của AB và HP
=>AHBP là hình bình hành
a) Xét\(\Delta BDE\)có:
P là tđ DE
Q là tđ EB
=> PQ là đường TB ,PQ//DB
CMTT=> MQ là đường TB=> MQ=\(\frac{1}{2}\)EC, MQ//EC
MN là đường Tb=> MN=\(\frac{1}{2}\) DB,MN//DB
PN là đường TB=> PN=\(\frac{1}{2}\)EC,PN//EC
Mà BD= CE( gt)=> MN=PQ=QM=NP=> MNPQ là hthoi
b) Kéo dài PM, cắt AC tại R,AB tại T
Do MNPQ là hthoi=>\(\widehat{BAC}=\widehat{QPN}\)( cặp góc t/ư)
mà \(\widehat{B\text{AF}}=\widehat{FAC}=\frac{1}{2}\widehat{BAC}\)
\(\widehat{QPM}=\widehat{MPN}=\frac{1}{2}\widehat{QPN}\)
=>\(\widehat{BAF}=\widehat{FAC}=\widehat{QPM}=\widehat{MPN}\)(1)
mặt khác,PN//AC=>\(\widehat{MPN}=\widehat{MRC}\)(2)( 2 góc đ/v)
từ(1)(2)=>\(\widehat{MRC}=\widehat{FAC}\).. Mà 2 góc này đ/v
=>MP//AF
Pc mik chưa bt lm
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A
Hạ K vuông góc DC tại N =>EM//KN﴾1﴿ Vì F dx K qua BC =>FC=CK =>2 góc FCB=FCK Mà A=C=60 độ =>góc KCN=60 Xét 2 tam giác vuông EMD và KNC có: ED=CK﴾cùng Bằng FC﴿ D= góc KCL => tam giác EMD=KNC ﴾cạnh huyền góc nhọn ﴿ =>EM=KN﴾2﴿ Từ ﴾1﴿ và ﴾2﴿ =>EKNM là HBH =>EK//DC =>EK//AB
hạ K vuông góc DC tại N => EM//KN(1)
vì F dx K qua BC = > FC = CK
=> 2 góc FCB = FCK
mà A=C + 60 độ => góc KCN = 60
xét 2 tam giác vuông EMD và KNC có :ED = CK ( cùng bằng FC ) D = góc KCL
=> tam giác EMD = KNC ( cạnh huyền góc nhọn )
=> EM = KN (2) từ (1) và (2)
=> EKNM là HBH => EK//DC=>EK//AB
A B C E K H D M
a/
Ta có
\(\widehat{B}=\widehat{C}\) (góc ở đáy tg cân ABC)
EK//AB \(\Rightarrow\widehat{EKC}=\widehat{B}\) (góc đồng vị)
\(\Rightarrow\widehat{EKC}=\widehat{C}\) => tg EKC cân tại E => CE=EK
Mà AD=CE
=> AD=EK (1)
Ta có
EK//AB => EK//AD (2)
Từ (1) và (2) => ADKE là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)
=> MA=MK; MD=ME (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
b/
Ta có \(H\in\left(M;MK\right)\) => MH=MK
Mà MK=MA (cmt)
=> MH=MK=MA
=> tg MHK cân tại M \(\Rightarrow\widehat{MHK}=\widehat{MKH}\)
\(\widehat{HMK}+\widehat{MHK}+\widehat{MKH}=\widehat{HMK}+2\widehat{MHK}=180^o\) (tổng các góc trong của 1 tg = 180 độ)
MH=MK=MA (cmt) => tg MAH cân tại M
\(\Rightarrow\widehat{MAH}=\widehat{MHA}\)
\(\widehat{HMK}=\widehat{MAH}+\widehat{MHA}\) (trong tg góc ngoài bằng tổng 2 góc trong không kề với nó)
\(\Rightarrow\widehat{HMK}=2\widehat{MHA}\)
Từ \(\widehat{HMK}+2\widehat{MHK}=180^o\Rightarrow2\widehat{MHA}+2\widehat{MHK}=180^o\)
\(\Rightarrow\widehat{MHA}+\widehat{MHK}=\widehat{AHK}=90^o\Rightarrow AH\perp BC\)
Xét tg vuông ABH và tg vuông ACH có
AH chung
AB=AC (cạnh bên tg cân ABC)
=> tg AHB = tg AHC (Hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau)
=> HB=HC