K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

a) 2AB=AM+AN => AB+AC=AB-BM+AC+CN

=>0= CN-BM => CN=BM.

b)Từ M kẻ đường song song với AN cắt BC tại K.

Ta có: tam giác ABC cân tại Á nên góc B=góc C. Mà MK//AN => góc MKB =góc ABC => góc MKB=góc B=> MB=MK=CN

=> 180độ - góc MKB=180 độ - góc B=> góc MKI=góc ICN

MÀ góc KMN=góc INA (so le trong).

Vậy tam giác MKI bằng tam giác NIC(g.c.g)=>MI=NI

11 tháng 1 2020

Hình tự vẽ :>

a) Ta có:

AM+AN=2AB

Mà AB=AC (△ABC cân)

\(\Rightarrow\)AM+AN=AB+AC

\(\Rightarrow\)AM+AC+CN=AM+MB+AC

\(\Rightarrow\)AM+AC+CN-AM-MB-AC=0

\(\Rightarrow\)(AM-AM)+(AC-AC)+CN-MB=0

\(\Rightarrow\)CN=MB (đpcm)

b) Kẻ BH là tia đối BI, BH=IC, nối MH

Ta có:

ACI+ICN=180o (kề bù)

ABI+MBH=180o (kề bù)

mà ABI=ACI (△ABC cân)

\(\Rightarrow\)MBH=ICN

Xét △MBH và △NCI có:

BH=CI (cách vẽ)

MBH=NCI (cmt)

MB=CN (c/m câu a)

\(\Rightarrow\) △MBH=△NCI (c.g.c)

\(\Rightarrow\)MHB=CIN (2 góc tương ứng)

\(\Rightarrow\)MH=NI (2 cạnh tương ứng)

Ta có: 

CIN=NIB (đối đỉnh)

\(\Rightarrow\)MHB=MIB

\(\Rightarrow\)△MHI cân

\(\Rightarrow\)MH=MI

Mà MH=NI

\(\Rightarrow\)MI=NI

\(\Rightarrow\)MC cắt MN ở trđ I của MN (đpcm)

24 tháng 3 2017

a.2ab=am+an

=> 2ab=am+ac+cn

=> ....=am+ab+cn

=> ab=am+cn

=> am+bn=am+cn

=> bm = cn

b. BC cắt MN tại I

vẽ NE // BC ( e thuộc ab kéo dài )

suy ra gốc aABC = gốc AEN

gốc AEN  = góc ABC

mà góc ABC = góc ACB ( ABC cân tại A)

hình thang BCNE là hình thang cân

=> CN = BE

mà CN = BM ( câu a )

=> Bm = BE

BI // NE

BI là đường trung bình MNE=> MI=IN

k mk nhá tks bn

29 tháng 12 2018

a.2ab=am+an

=> 2ab=am+ac+cn

=> ....=am+ab+cn

=> ab=am+cn

=> am+bn=am+cn

=> bm = cn

b. BC cắt MN tại I

vẽ NE // BC ( e thuộc ab kéo dài )

suy ra gốc aABC = gốc AEN

gốc AEN  = góc ABC

mà góc ABC = góc ACB ( ABC cân tại A)

hình thang BCNE là hình thang cân

=> CN = BE

mà CN = BM ( câu a )

=> Bm = BE

BI // NE

BI là đường trung bình MNE=> MI=IN

17 tháng 12 2017

(Bạn tự vẽ hình giùm)

a/ Ta có \(\widehat{B}=2\widehat{A}\)(1)

và \(\widehat{A}+\widehat{B}=90^o\)(\(\Delta ABC\)vuông tại C) (2)

Thế (1) vào (2), ta có: \(\widehat{A}+2\widehat{A}=90^o\)

=> \(3\widehat{A}=90^o\)

=> \(\widehat{A}=\frac{90^o}{3}=30^o\)

=> \(\widehat{B}=2\widehat{A}=2.30^o=60^o\)

Vậy \(\hept{\begin{cases}\widehat{A}=30^o\\\widehat{B}=60^o\end{cases}}\)

b/ Ta có \(\widehat{BCA}+\widehat{DCA}=180^o\)(kề bù)

=> 90o + \(\widehat{DCA}\)= 180o

=> \(\widehat{DCA}\)= 90o

\(\Delta ABC\)và \(\Delta ADC\) có: Cạnh AC chung

\(\widehat{DCA}=\widehat{BCA}\left(=90^o\right)\)

BC = DC (gt)

=> \(\Delta ABC\)\(\Delta ADC\)(c. g. c) => AB = AD (hai cạnh tương ứng) (đpcm)

c/ Ta có \(\Delta ABC\)\(\Delta ADC\)(cm câu b) => \(\widehat{BAC}=\widehat{DAC}\)(hai góc tương ứng)

\(\Delta CNA\)và \(\Delta CMA\)có: NA = MA (gt)

\(\widehat{BAC}=\widehat{DAC}\)(cmt)

Cạnh CA chung

=> \(\Delta CNA\)\(\Delta CMA\)(c. g. c) => CN = CM (hai cạnh tương ứng) (đpcm)

25 tháng 1 2020

Hình bạn tự vẽ nha :))

a)* Ta có: \(\Delta ABC\)cân tại A <=> AB=AC

\(\hept{\begin{cases}AM=AB+MB\\AN=AC+NC\end{cases}\Rightarrow AM=AN}\)(do \(AB=AC;MB=NC\))

\(\Rightarrow\Delta AMN\)cân tại A

Từ \(\Delta ABC\)cân tại A, có: \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)(1)

Từ \(\Delta AMN\)cân tại A, có: \(\widehat{AMN}=\frac{180^o-\widehat{A}}{2}\)(2)

Từ (1) và (2), suy ra: \(\widehat{ABC}=\widehat{AMN}\)

\(\Rightarrow MN//BC\)(2 góc đồng vị bằng nhau)

b) Xét \(\Delta ABI\)và \(\Delta ACI\)có:

\(\hept{\begin{cases}AB=AC\\AIchung\\IB=IC\end{cases}\Rightarrow\Delta ABI=\Delta}ACI\left(ccc\right)\)

\(\Rightarrow\widehat{BAI}=\widehat{CAI}\)(2 góc tương ứng)      

\(\Rightarrow AI\)là p/giác của \(B\widehat{A}C\) (3)

Tương tự, ta có: \(\widehat{MAE}=\widehat{NAE}\)

\(\Rightarrow AE\)là p/ giác của \(\widehat{BAC}\)(4)

Từ (3) và (4), ta có: A,I,E thẳng hàng