K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

ta có AB=AC=7cm

xét\(\Delta AHB\)vuông tại H =>BH=\(\sqrt{33}\)cm

=>BC=\(\sqrt{42}\)cm

=>p=\(14+\sqrt{42}\)\(\approx20.48cm\)

16 tháng 3 2020

Áp dụng định lý Pitago vào tam giác ABH tìm được BH, rồi đến tam giác BHC tìm được BC sau đó tính chu vi nha!

16 tháng 3 2020

Theo định lí pytago, ta có :

       AH2+HC2+AC2

hay AC2=42+32

=> AC2= 25=>AC=5

Xét 2 tam giác vuông AHC và AHB , ta có :

Góc ABH= góc ACH(gt)

Cạnh AH chung

do đó tam giác ABH=tam giác ACH(cạnh huyền- góc nhọn)

=>BH=HC(2 cạnh tương ứng)

BC=BH+CH

=> BC= 3+3=6

mà tam giác ABC là tam giác cân nên AC=AB

Chu vi của tam giác ABC là : 5+5+6=16 cm

Chúc bạn học tốt

16 tháng 3 2020

Hình bạn tự vẽ nha

Vì H \(\in AC\)\(\Rightarrow AH+HC=AC\)

\(\Rightarrow AC=7\left(cm\right)\)

Vì \(\Delta ABC\) cân tại A

\(\Rightarrow AB=AC=7\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta có

\(AH^2+BH^2=AB^2\)

\(\Rightarrow BH^2=AB^2-AH^2\)

\(\Rightarrow BH^2=7^2-4^2=33\)

\(\Rightarrow BH=\sqrt{33}\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BHC vuông tại H ta có

\(BH^2+HC^2=BC^2\)

\(\Rightarrow BC^2=33+9=42\left(cm\right)\)

\(\Rightarrow BC=\sqrt{42}\left(cm\right)\)

Chu vi tam giác ABC là:

\(7+7+\sqrt{42}\approx20\left(cm\right)\)

Vậy...

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=5^2-3^2=16\)

hay CH=4(cm)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AB^2=3^2+2.25^2=14.0625\)

hay AB=3,75(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=2,25+4=6,25(cm)

Chu vi của tam giác ABH là: 

\(C_{ABH}=AB+BH+HA=3.75+2.25+3=9\left(cm\right)\)

Chu vi của tam giác ACH là:

\(C_{ACH}=AC+CH+AH=5+3+4=12\left(cm\right)\)

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+AC+BC=3.75+6.25+5=15\left(cm\right)\)

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

Ta có: AC=AH+HC(H nằm giữa A và C)

nên AC=8+3=11(cm)

Ta có: ΔABC cân tại A(gt)

nên AB=AC(hai cạnh bên)

mà AC=11cm(cmt)

nên AB=11cm

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=11^2-8^2=57\)

hay \(BH=\sqrt{57}cm\)

Áp dụng định lí Pytago vào ΔBHC vuông tại H, ta được:

\(BC^2=BH^2+CH^2\)

\(\Leftrightarrow BC^2=\left(\sqrt{57}\right)^2+3^2=66\)

hay \(BC=\sqrt{66}cm\)

Vậy: \(BC=\sqrt{66}cm\)

Ta có: AC=AH+HC(H nằm giữa A và C)

nên AC=8+3=11(cm)

Ta có: ΔABC cân tại A(gt)

nên AB=AC(hai cạnh bên)

mà AC=11cm(cmt)

nên AB=11cm

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=11^2-8^2=57\)

hay \(BH=\sqrt{57}cm\)

Áp dụng định lí Pytago vào ΔBHC vuông tại H, ta được:

\(BC^2=BH^2+HC^2\)

\(\Leftrightarrow BC^2=\left(\sqrt{57}\right)^2+3^2=66\)

hay \(BC=\sqrt{66}cm\)

Vậy: \(BC=\sqrt{66}cm\)

18 tháng 2 2022

\(\Rightarrow AC=10cm\)

\(\Rightarrow AB=10cm\) ( AB = AC )

Áp dụng định lý pitago vào tam giác vuông ABH

\(AB^2=AH^2+HB^2\)

\(\Rightarrow HB=\sqrt{AB^2-AH^2}=\sqrt{10^2-7^2}=\sqrt{51}\)

Áp dụng định lí pitago vào tam giác vuông BHC

\(BC^2=HC^2+HB^2\)

\(\Rightarrow BC=\sqrt{3^2+\sqrt{51}^2}=2\sqrt{15}\)

25 tháng 1 2022

a, Theo định lí Pytago tam giác AHC vuông tại H

\(AC=\sqrt{AH^2+HC^2}=\sqrt{64+36}=10\)cm 

Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A

mà AH là đường cao đồng thời là đường trung tuyến 

=> HC = HB = 6 cm 

b, Vì tam giác ABC cân tại A => ^ABC = ^ACB 

c, Vì tam giác ABC cân tại A, AH đồng thời là đường phân giác 

=> ^BAH = ^HAC 

Xét tam giác AMH và tam giác ANH có : 

^AMH = ^ANH = 900

AH _ chung 

^BAH = ^NAH ( cmt ) 

Vậy tam giác AMH = tam giác ANH ( ch - gn ) 

=> MH = NH ( 2 cạnh tương ứng ) 

Xét tam giác HMN có MH = NH ( cmt ) 

=> tam giác HMN cân tại H

25 tháng 1 2022

chắc đúng ko đấy bn đây là bài kiểm tra nên tui phải làm đúng

4 tháng 5 2018

a, Ta có ∆ABC cân ở A(gt)

AH\(\perp\) BC=>AH là đường cao

(1)=>AH đồng thời là trung tuyến=>HB=HC

(2)=>AH đồng thời là phân giác=>góc BAH=góc CAH

b, Áp dụng định lí pyta go cho ∆ABH ta có

AB2=AH2+BH2 =>52=42+HB2=>HB=√52--42=3

4 tháng 5 2018

d, Xét ∆DHB và ∆EHC có

Góc HDB=góc HEC =90°(HD\(\perp\) AB, HE vuông góc ACgt)

Góc B=góc C ( tam giác ABC cân tai A gt)

HB =HC (cmt)

=> ∆DHB=∆EHC(ch-cgv)=>HD=HE=>∆HDE cân tại H