K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

Tam giác ABC cân tại C có góc ACB=100 suy ra ABC=BAC=40

Trên AB lấy điểm M sao cho AM=AD. Tam giác ADM cân tại A có góc A=20 => ADM=AMD=80 độ

Suy ra góc MDB=40 độ. Tam giác MDB cân tại M. MD=MB.(1)

Trên AB lấy điểm N sao cho AN=AC. Tam giác ACD=AND(c.g.c) => CD=DN (2)

Ta có: góc DNM=DMN=80 => Tam giác DNM cân tại D. DN=DM (3)

Từ (1),(2),(3) suy ra DC=MB

Hay AD+DC=AM+MB=AB(dpcm)

1 tháng 5 2016

cho tam giác cân ABC có góc ACB = 100. Kẻ phân giác trong của góc CAB cắt CB tại D. Chứng minh rằng AD + DC = AB

 

Câu hỏi tương tự Đọc thêm
Toán lớp 8
              
 
14 tháng 4 2016

bạn chưa biết làm phần nào z

oh sorry I don't know!!!

6747568768

5 tháng 6 2015

bạn viết từng baj ra mjk giải cho

29 tháng 6 2016

đúng đó bn

25 tháng 6 2017

Làm gì có khái niệm hai tia bằng nhau.

ĐỀ ĐÚNG phải là hai ĐƯỜNG phân giác bằng nhau.

7 tháng 10 2016

1.

trên tia đối tia CD lấy điểm H sao cho AC=CH.Nối BH

=>  TAM GIÁC ABC=HBC(c.g.c)

=>  AB=BH  =>  AB+BD=HB+BD

AC=CH  =>  AC+CD=HC+CD

Tam giác DBH có BD+BH>DH ( bất đẳng thức tam giác)

=> đpcm

7 tháng 10 2016

2.

góc C = 80 độ

tam giác BMC cóCB=CM nên cân tại C

=>góc BMC=góc CBM=(180 -  80)/2=50

7 tháng 6 2019

Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha 

~ Hok tốt ~
#JH

7 tháng 6 2019

a) 

Xét tam giác ABC ta có

\(AB^2+AC^2=BC^2\)(định lý py ta go)

144 + 256 = BC2

400 = BC2

BC = 20 ( cm )

Xét tam giác ABC có 

BD là đường phân giác của tam giác 

nên AD/DC = AB/BC = 16/20 = 4/5

có AD + DC = AC = 16 

dễ tìm ra AD = 64/9  (cm)

DC = 80/9 (cm)

b) xét 2 tam giác HBA và ABC

có góc ABC chung

2 góc AHB và CAB bằng nhau cùng bằng 90 độ

nên 2 tam giác HAB và ABC đồng dạng với nhau

c)

có 2 tam giác HAB và ABC đồng dạng với nhau

nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)

d)

có E là hình chiếu của của C trên BD

nên \(CE\perp BD\)

suy ra \(\widehat{BEC}=90^0\)

xét 2 tam giác BHK và BEC

có \(\widehat{BHK}=\widehat{BEC}=90^0\)

\(\widehat{CEB}\)chung

nên 2 tam giác BHK và BEC đồng dạng với nhau

suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)

có 2 tam giác HAB và ABC đồng dạng với nhau

suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)

từ (1) và (2) suy ra 

\(AB^2=BK\cdot BE\)