Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tam giác cân là ABC (cân tại A), đường cao AH.
Gọi cạnh đáy của tam giác cân là a, cạnh bên là b. Theo đề bài:
10a = 12b
=> a/b = 6/5
Đặt a = 6k, b = 5k
Xét tam giác AHC vuông tại H:
AH^2 + HC^2 = AC^2
<=> 10^2 + a^2/4 = b^2
<=> a^2/4 = b^2 - 100
<=> (6k)^2/4 = (5k)^2 - 100
<=> 9k^2 = 25k^2 - 100
<=> 16k^2 = 100 <=> k = 10/4
=> a = 6k = 6.10/4 = 15 (cm)
=> S_ABC = 1/2BC.AH = 1/2a.10 = 5a = 5.15 = 75 (cm^2)
Lời giải:
Gọi $H$ là chân đường cao kẻ từ $A$. Vì $ABC$ cân tại $A$ nên $H$ là trung điểm $BC$
Ta có:
\(S_{ABC}=\frac{AH.BC}{2}=\frac{h_C.AB}{2}\)
\(\Rightarrow BC=\frac{h_C.AB}{AH}=\frac{12AB}{15,6}=\frac{10}{13}AB\)
\(\Rightarrow BH=\frac{5}{13}AB\)
Áp dụng định lý Pitago:
$AH^2=AB^2-BH^2=AB^2-(\frac{5}{13}AB)^2$
$\Leftrightarrow 15,6^2=\frac{144}{169}AB^2$
$\Rightarrow AB=16,9$
$\Rightarrow BC=\frac{10}{13}AB=13$ (cm)
Đặt BC = 2x, từ tính chất của tam giác cân ta suy ra CH = x
Áp dụng định lí Pitago tính được AC =
Từ KBC HAC
hay
Đưa về phương trình 15,62 + x2 = 6,76x2
Giải phương trình trên ta được nghiệm dương x = 6,5
Vậy BC = 2.6,5 = 13(cm)