K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

O A B D m C

a) \(\widehat{BDA}=90^o\)(góc nội tiếp chắn nửa đường tròn)

=>\(\widehat{BDM}=90^o;\widehat{MCB}=90^o\left(gt\right)\)

\(\Rightarrow\widehat{BDM}+\widehat{MCB}=90^o+90^o=180^o\)

=> tứ giác BCMD nội tiếp (tứ giác có 2 góc đối bằng 180o)

b) \(\sin\widehat{BAD}=\frac{BD}{AB}=\frac{R}{2R}=\frac{1}{2}=\sin30^o\Rightarrow\widehat{BAD}=30^o\)

\(AD=AB.\cos\widehat{BAD}=2R.\cos30^o=2R\cdot\frac{\sqrt{3}}{2}=R\sqrt{3}\)

Xét \(\Delta\)CMA có: \(\widehat{C}=90^o\), AC=AB+CB=3R có AC=MAcosA

=> \(MA=\frac{AC}{\cos30^o}=\frac{3R}{\frac{\sqrt{3}}{2}}=2\sqrt{3}R\)

=> MD=MA-AD=\(2\sqrt{3}R-\sqrt{3}R=\sqrt{3}R\)

=> AD=MD=\(R\sqrt{3}\)=> D là trung điểm MA

=> \(\Delta\)MBA cân tại B (vì BD vừa là đường cao vừa là đường trung tuyến)

c) MA.AD=\(\left(2\sqrt{3}R\right)\cdot R\sqrt{3}=6R^2\)

23 tháng 4 2021

A B C N M E D H I O 1 1 1

1. Do BD , CE là đường cao của tam giác ABC nên \(\widehat{BDC}=90^o\)và \(\widehat{BEC}=90^o\)

Vì E , D nằm cùng 1 phía trên nửa mặt phẳng có bờ là đường thẳng BC nên tứ giác BCDE nội tiếp trong đường trong đường kính BC

2. Trên cung tròn đường kính BC ta có : \(\widehat{D_1}=\widehat{C_1}\)( cùng chắc cung \(\widebat{BE}\))

Trên đường tròn (O) , ta có : \(\widehat{M_1}=\widehat{C_1}\)( cùng chắn cung \(\widebat{BN}\))

Suy ra : \(\widehat{D_1}=\widehat{M_1}\Rightarrow MN//DE\)( do có 2 góc đồng vị bằng nhau )

3. Gọi H là trực tâm của tam giác ABC và I là trung điểm của BC.

Xét tứ giác ADHE có \(\widehat{AEH}=90^o\)( do CE vuông AB )

                                 \(\widehat{ADH}=90^o\)( do BD vuông AC )

\(\Rightarrow\widehat{AEH}+\widehat{ADH}=180^O\)nên tứ giác ADHE nội tiếp đường tròn đường kính AH

Vậy đường tròn ngoại tiếp tam giác ADE là đường tròn đường kính AH , có bán kính bằng \(\frac{AH}{2}\)

Kẻ đường kính AK của đường tròn (O) , ta có : 

\(\widehat{KBA}=90^o\)( góc nội tiếp chắn nửa đường tròn (O) )

\(\Rightarrow KB\perp AB\)

mà \(CE\perp AB\left(gt\right)\)nên KB // CH (1)

Chứng minh tương tự ta có KC // BH (2)

Từ (1) và (2) => BKCH là hình bình hành

Vì I là trung điểm của BC suy ra I cũng là trung điểm của KH . Mặt khác ta có O là trung điểm của AK nên \(OI=\frac{AH}{2}\). Do BC cố định nên I cố định suy ra Oi không đổi

Vậy khi điểm A di động trên cung lớn BC thì độ dài bán kính đường tròn ngoại tiếp tam giác ADE luôn không đổi 

Do tứ giác BCDE nội tiếp nên \(\widehat{ADE}=\widehat{ABC}\)( tính chất góc ngoài bằng góc trong đối diện ) (3)

Xét 2 tam giác ADE và ABC ta có \(\widehat{DAE}=\widehat{BAC}\), kết hợp với (3) ta có 2 tam giác này đồng dạng 

\(\Rightarrow\frac{S_{\Delta ADE}}{S_{\Delta ABC}}=\left(\frac{AD}{AB}\right)^2=\left(\cos\widehat{DAB}\right)^2=\left(\cos\widehat{CAB}\right)^2\)

Do BC cố định nên cung nhỏ BC không đổi suy ra số đô góc CAB không đổi . Vậy để SADE đạt giá trị lớn nhất thì SABC cũng phải đạt giá trị lớn nhất . Điều này xảy ra khi và chỉ khi A là điểm chính giữa cung lớn BC

30 tháng 6 2015

b)

 + Xét đt (o) có

      tứ giác BFACN nội tiếp đt

    \(\rightarrow ABC\)=AFC ( 2 góc nt cùng chắn cung AC)

    

  CÓ :  

      BD là tiếp tuyến đt (o) tại B(gt)

       \(\rightarrow\) BD vuông góc BO (TC tiếp tuyến)

       \(\rightarrow\)BD vuông góc BC (O thuộc BC)

        \(\rightarrow\) DBC = 90(dn)

        \(\rightarrow\)tam giác DBC vuông tại B

        xét tam giác vuông DBC cso

          BDC+DCB=90(2 góc phụ nhau trong tg vuông)        (1)

        +Xét đt (o) có: 

             BAC= 90 ( góc nt chắn nửa dtđk BC)
              \(\rightarrow\)tam giác BAC vuông tại A

          Xét tam giác vuông BAC có

                ABC+ACB=90 (2 gọc phụ nhau trong tam giác vuông)

              \(\rightarrow\) ABC+DCB=90(A thuộc DC )                                 (2)

                từ(1) và(2) \(\rightarrow\) BDC=ABC( cùng phụ DCB)

                                       Mà AFC=ABC(CMT) 

                                \(\rightarrow\) BDC=AFC(=ABC)

          +Có :

                 AFC+AFE=180( 2 góc kề bù)

               Mà 2 góc ở vị trí đối nhau 

             \(\rightarrow\) tứ giác DEFA nội tiếp ( DHNB tứ giác nội tiếp)