Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\widehat{CBH}=\widehat{DAC}\) (cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBC}=\widehat{KAC}\) (cùng chắn cung KC)
Suy ra \(\widehat{KBC}=\widehat{CBH}\).
Xét tam giác BHK có \(\widehat{BCK}=\widehat{BCH},BD\perp HK\)
Vậy tam giác BHK cân tại B và BC là trung trực của HK.
b) Vì AM là đường kính nên \(\widehat{ACM}=90^o\).
\(\widehat{ABC}=\widehat{AMC}\) (cùng chắn cung AC)
Xét hai tam giác ABD và AMC có:
\(\left\{{}\begin{matrix}\widehat{D}=\widehat{C}=90^o\\\widehat{ABD}=\widehat{AMC}\end{matrix}\right.\) Vậy tam giác ABD đồng dạng với tam giác AMC (g.g).
Ta có từ giác BFEC nội tiếp ( vì có góc BFC = BEC = 90 độ).
Suy ra góc ABC = AEF => góc AEF = góc AMC.
Mà \(\widehat{AMC}+\widehat{CAM}=90^o\Rightarrow\widehat{AEF}+\widehat{CAM}=90^o\\ \Rightarrow AO\perp EF.\)
d) Xét hai tam giác AEQ và AMC đồng dạng ta sẽ có được AQ.AM = AE.AC.
Câu hỏi của Phạm An Nguyên - Toán lớp 8 - Học toán với OnlineMath
mình trả lời trước câu b:
Bạn c/m tam giác AHM = tam giác DHM (ccc) => HM là p/g góc AHD => góc AHM =1/2.(góc AHD) = 90/2 =45
Bạn tự vẽ hình nha
a) Xét \(\Delta\)ABC có:BI,CK là hai đường cao
Mà BI cắt CK tại H(gt)
=> H là trực tâm \(\Delta\)ABC
=>AH cũng là đường cao thứ 3 của \(\Delta\)ABC
Xét \(\Delta\)ABI và \(\Delta\)ACK có:
^AIB=^AKC =90(gt)
^A: góc chung
=> \(\Delta\)ABI ~\(\Delta\)ACK(g.g)
b) xét \(\Delta\)ADC và \(\Delta\)AID có:
^ADC=^AID=90(gt)
^A:góc chung
=> \(\Delta\)ADC~\(\Delta\)AID(g.g)
=>\(\frac{AD}{AI}=\frac{AC}{AD}\)
=> AD^2 =AC*AI