K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2021

xét tam giác ABC cân tại A

có AM là trung tuyến

=> AM là đg cao

ta có góc AMB =90 độ

ADB=90 độ(BD vg góc AC)

=>Tứ giác ABMD nội tiếp

xét tam giác BDM có N,I lần lượt là trg điểm MB,BD

=> NI là đtb tam giác BMD

=>IN//DM=> góc INM= DMC

=> góc DMC =BAK 

ta có gócINM=BAK cùng= DMC

=> tứ giác ABNK nội tiếp

b) xét tam giác CNK, CAB có NCK chung

góc CNK= BAC(cmt)

=> 2 tam giác CNK, CAB đồng dạng(g.g)

=> CK/cb= CN/AC

=> AC.CK=BC.CN

mà CN=MN+MC= BC/4+BC/2=3BC/4

nên AC.CK=3.BC^2/4=> BC^2= 4/3AC.CK

15 tháng 1 2022

a) xét tam giác ABC cân tại A

 AM là đường trung tuyến => AM là đường cao

ta có : AMB = 90 độ

 ADB = 90 độ ( BD vuông góc với AC)

=> tứ giác ABMD nội tiếp đường tròn

xét tam giác BDM có lần lượt N, I là trung điểm của MB và BD

=> NI là đường trung bình của tam giác BDM

=> IN//DM

=>  +INM = DMC

+ DMC = BAK

=> INM = BAK

=> tứ giác  nội tiếp.

b) xét tam giác CNK, CAB có NCK chung 

góc CNK = BAC

=> tam giác CNK đồng dạng với tam giác CAB

=> CK/CB=CN/AC

=> AC.CK=BC.CN

mà CN = MN+MC= BC/4 + BC/2=3BC/4

nên AC.CK=3BC^2/4=> BC2=34CA.CK

29 tháng 12 2017

B C A D M N I K

+) Do tam giác ABC cân tại A, có AM là trung tuyến nên đồng thời là đường cao, hay \(\widehat{AMB}=90^o\)

Hai tam giác vuông ADB và AMB có chung cạnh huyền AB nên tứ giác ABMD nội tiếp đường tròn đường kính AB.

+) Xét tam giác BMD có N và I lần lượt là trung điểm của BM và BD nên NI là đường trung bình của tam giác. Vậy nên NI // MD. Suy ra \(\widehat{KNC}=\widehat{DMC}\)  (Hai góc đồng vị)

Mà do tứ giác ABMD nội tiếp nên \(\widehat{DAB}=\widehat{DMC}\) nên \(\widehat{KNC}=\widehat{DAB}\)

Vậy thì tứ giác ABNK nội tiếp.

+) Xét tam giác CKN có MD // NK nên áp dụng định lý Ta let ta có:

\(\frac{DC}{CK}=\frac{MC}{CN}=\frac{2}{3}\)

Xét tam giác MDC và ABC có: góc C chung, \(\widehat{CAB}=\widehat{CMD}\) nên \(\Delta ABC\sim\Delta MDC\left(g-g\right)\)

\(\Rightarrow\frac{DC}{BC}=\frac{MC}{AC}\Rightarrow DC.AC=BC.MC\)

\(\Rightarrow\frac{2}{3}AC.CK=\frac{1}{2}BC^2\Rightarrow4AC.CK=3BC^2\)

29 tháng 12 2017

cảm ơn cô nhiều, cô làm bài ấy hay thật

25 tháng 2 2018

Tự vẽ hình lấy chứ hình nó khó vẽ trên này lắm thông cảm 

 a) P và Q là tâm đường tròn nội tiếp các tam giác đồng dạng AHB và CHA nên

\(\frac{HP}{HQ}=\frac{AB}{AC}\)nên \(\Delta HPQ~\Delta ABC\left(c-g-c\right)\)

b) Từ câu a suy ra \(\widehat{HPQ}=\widehat{C}\)mà \(\widehat{C}=\widehat{A_1}\)

Nên \(\widehat{HPQ}=\widehat{A_1}\)( 1 )

Tứ giác HPKQ có \(\widehat{PHQ}=\widehat{PKQ}=90^o\)nên là tứ giác nội tiếp, suy ra \(\widehat{HPQ}=\widehat{HKP}\)( 2 )

Từ (1) VÀ (2) suy ra \(\widehat{A_1}=\widehat{HKP}\)do đó KP // AB. Chứng minh tương tự, KQ // AC.

c) Ta có : \(\widehat{C}=\widehat{HKP}=\widehat{MKP}\)tự chứng minh \(\widehat{MKP}=\widehat{M_1}\)(sử dụng kết quả ở câu b).

d) Ta có : \(\widehat{A_1}=\widehat{M_1}\left(=\widehat{C}\right)\)nên KM = KA. Tương tự KP =KA. Do đó năm điểm A, M, P, Q, N thuộc đường tròn (K; KA).

e) Từ câu a suy ra \(\widehat{HQP}=\widehat{C}\)nên HQEC là tứ giác nội tiếp, do đó \(\widehat{QEA}=\widehat{QHC}=45^o\)

Tam giác ADE có : \(\widehat{E}=45^o\)

\(\Rightarrow\) ADE là tam giác vuông cân.

25 tháng 2 2018

à câu cuối còn một cách nữa :)

Chứng minh \(BP\perp AQ\)tương tự ta cũng chứng minh \(CQ\perp AP\)

\(\Rightarrow\)\(AO\perp PQ\)(O là giao điểm của BP và CQ). Tam giác ADE có AO là tia phân giác góc A và \(AO\perp DE\)

\(\Rightarrow\)Tam giác AED vuông cân ( đpcm )

a: Xét tứ giác BCDE có 

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó:BCDE là tứ giác nội tiếp

b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{A}\) chung

Do đó: ΔADB\(\sim\)ΔAEC

Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}=\dfrac{2\cdot AM}{2\cdot AN}=\dfrac{AM}{AN}\)

hay \(AE\cdot AM=AN\cdot AD\)

Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này