K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.a, chứng minh tam giác AOM=tam giác BOMb. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BDc. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Otbài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm...
Đọc tiếp

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.

a, chứng minh tam giác AOM=tam giác BOM

b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD

c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot

bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng 

a. ON=OM và AN=BM

b. tia OH là tia phân giác của góc xOy

c. đường thẳng qua B // AC cắt tia DN tại N

chứng minh: tam giác ABM=tam giác CNM

0
11 tháng 12 2021

\(a,\left\{{}\begin{matrix}OA=OB\\\widehat{AOD}=\widehat{BOD}\left(OD\text{ là p/g}\right)\\OD\text{ chung}\end{matrix}\right.\Rightarrow\Delta OAD=\Delta OBD\left(c.g.c\right)\\ b,\Delta OAD=\Delta OBD\Rightarrow\widehat{ODA}=\widehat{ODB}\\ \text{Mà }\widehat{ODB}+\widehat{ODA}=180^0\\ \Rightarrow\widehat{ODB}=\widehat{ODA}=90^0\\ \Rightarrow OD\bot AB\)

11 tháng 12 2021

cảm ơn ạ.

22 tháng 12 2018

a, xét tam giác aom và tam giác bom có

oa=ob(gt)

góc aom=góc bom(gt)

om chung

=>tam giác aom=tam giác bom (cgc)

b,

14 tháng 2 2018

a)Xét tam giác OAH và tam giác OBH (2 tam giác vuông)

Có:                  OA=OB(tam giác AOB cân tai O)

                             OH  (chung)

Suy ra tam giác OAH=tam giác OBH(canh huyền-canh gv)

Suy ra                  HA=HB(2 canh t.ứ)

b)Xét tam giác MAH và tam giác NBH(2 tam giác vuông)

                           HA=HB(c/m trên)

                              A=B(tam giác OAB cân)

Suy ra tam giác MAH= tam giác NBH(canh huyền-góc nhon)

Suy ra                   HM=HN(2 canh t.ứ)

15 tháng 2 2018

a/ \(\Delta HOA\)vuông và \(\Delta HOB\)vuông có: OA = OB (\(\Delta AOB\)cân tại O)

Cạnh HO chung

=> \(\Delta HOA\)vuông = \(\Delta HOB\)vuông (cạnh huyền - góc nhọn) => HA = HB (hai cạnh tương ứng) (đpcm)

b/ Ta có: AO = BO (\(\Delta AOB\)cân tại O)

và OM = ON (gt)

=> AO - OM = BO - ON

=> AM = BN

\(\Delta HAM\)và \(\Delta HBN\)có: AM = BN (cmt)

\(\widehat{A}=\widehat{B}\)(\(\Delta AOB\)cân tại O)

HA = HB (cm câu a)

=> \(\Delta HAM\)\(\Delta HBN\)(c - g - c) => HM = HN (hai cạnh tương ứng) (đpcm)