Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: \(\widehat{B}\)=\(\widehat{F}\); AB = EF
Để tam giác ABC = tam giác DEF theo trường hợp cạnh góc cạnh, ta cần bổ sung điều kiện BC = FD
Khi đó. tam giác ABC = tam giác EFD (c.g.c)
b/ Ta có: tam giác ABC = tam giác EFD
=> AB = EF; BC = FD; AC = DE
Chu vi tam giác ABC = tam giác EFD
AB + BC + AC = EF + FD + DE = 5 + 6 + 6
= 17 (cm)
Vậy chu vi tam giác ABC=chu vi tam giác EFD = 17 cm
+) Do ΔABC = ΔDEH nên:
AB = DE = 5 cm
AC = DH= 6 cm
+) Vì chu vi tam giác DEH là 19 cm nên:
DE + EH + DH = 19
Thay số: 5 + EH +6 = 19 suy ra: EH = 8 cm
Vậy độ dài các cạnh của tam giác DEH là: DE = 5cm; DH = 6cm; EH = 8cm.
ΔABC=DEFΔABC=DEF
=> AB=DE=3cm; BC=EF=5cm; AC=DF=4cm.
Diện tích ΔABCΔABC=Diện tích ΔDEFΔDEF=3+5+4=12 (cm)
Đ/S:12
ai k mik 3 cái mik k lại 9 cái
#mai
Do \(\Delta AMN=\Delta PQR\)=> PQ = AM = 6cm , PR = AN = 4cm , MN = QR = 5cm .
Chu vi \(\Delta AMN\)bằng chu vi \(\Delta PQR\)và bằng là : 6 + 4 + 5 = 15cm.