K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

Hình bạn tự vẽ nhabucminh

a) Xét ∆ADE và ∆CFE, ta có:

AE = CE (gt)

^AED = CEF^ (đối đỉnh)

DE = FE(gt)

Suy ra: ∆ADE = ∆CFE (c.g.c)

->AD = CF (hai cạnh tương ứng)

Mà AD = DB (gt)

->Vậy: DB = CF

b) Ta có: ∆BDC = ∆FCD (chứng minh trên)

Suy ra: ^C1 = ^D1 (hai góc tương ứng)

->Suy ra: DE // BC (vì có hai góc so le trong bằng nhau)

ΔΔBDC = ∆FCD => BC = DF (hai cạnh tương ứng)

DE = 1/2DF(gt).

->Vậy DE = 1/2BC

23 tháng 7 2018

â) Xét tam giác ADE và tam giác FEC ta có:

AE=EC ( E là trung điểm AC )

DE= EF ( E la trung diem DF)

góc AED= góc CEF ( 2 góc đối đỉnh )

==> tam giác ADE = tam giác FEC ( c=g=c)

---> AD= CF ( 2 canh tuong ung )

mà AD=ĐB ( D là trung điểm AB)

nen DB=CF

b, ta co :

DE=1/2 DF ( E la trung diem DF)

DF= BC ( tam giác FCD= tam giác BDC)

--> DE=1/2 BC

10 tháng 6 2017

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: ΔBDC= ΔFCD(chứng minh trên)

Suy ra: ∠(C1 ) =∠(D1 ) (hai góc tương ứng)

Suy ra: DE // BC ( vì có hai góc so le trong bằng nhau)

ΔBDC= ΔFCD suy ra BC = DF (hai cạnh tương ứng)

Mà DE = 1/2 DF(gt). Vậy DE = 1/2 BC

23 tháng 3 2018

a) xét tam giác ADE và tam giác FEC, ta có:

    +) AE = EC (E là trung điểm của AC)

    +) DE = EF (E là trung điểm của DF)

\(\widehat{ADE}=\widehat{CEF}\)(hai góc đối đỉnh)

=> \(\Delta ADE=\Delta FEC\) (c = g = c)

=> AD = CF (2 cạnh tương ứng)

mà AD = DB (D là trung điểm của AB)

nên: CF = BD

b) ta có: 

\(\widehat{EAD}=\widehat{ECF}\left(\Delta ADE=\Delta FEC\right)\)

mà góc EAD và góc ECF nằm so le

nên AD//CF hay AB//CF 

xét tam giác BDC và tam giác DCF, ta có:

BD = CF (Cm a)

DC = DC

\(\widehat{BDC}=\widehat{FCD}\)(2 góc so le trong và AB//CF)

=> \(\Delta BDC=\Delta DCF\)(c = g = c)

c) ta có: 

\(DE=\frac{1}{2}DF\)(E là trung điểm DF)

DF = BC \(\left(\Delta FCD=\Delta BDC\right)\)

=> \(DE=\frac{1}{2}BC\)

30 tháng 4 2024

kk

 

22 tháng 2 2021

lớp 7 thì em chịu cvhij ạ , em mới lớp 5 thui ^^!

22 tháng 2 2021

a) Xét tg ADE và CFE, có :

AE=EC(gt)

ED=EF(gt)

\(\widehat{AED}=\widehat{FEC}\left(đđ\right)\)

=> Tg ADE=CFE (c.g.c)

=> CF=AD

Mà AD=BD(gt)

=> CF=BD (đccm)

- Do tg ADE=CFE (cmt)

\(\Rightarrow\widehat{FCE}=\widehat{EAD}\)

Mà chúng là 2 góc slt

=> CF//AB (đccm)

b) Nối F với B

Xét tg BCF và FDB có :

BD=FC(cmt)

BF-cạnh chung

\(\widehat{ABF}=\widehat{BFC}\)(AB//CF)

=> Tg BCF=FDB(c.g.c)

\(\Rightarrow\widehat{DFB}=\widehat{FBC}\)

Mà chúng là 2 góc slt

=> DF//BC (DE//BC) (đccm)

-Do tg BCF=FDB(cmt)

=> DF=BC

Mà : \(DE=EF=\frac{1}{2}DF\)

\(\Rightarrow DE=\frac{1}{2}BC\)

=> BC=2DE (đccm)

#H

19 tháng 2 2021

hình tự vẽ nha

a) Xét tam giác AED và tam giác CEF có:

AE=EC (GT)

góc AED=góc CEF (đối đỉnh)

ED=EF (GT)

suy ra AD=CF

AD=BD (GT)

suy ra CF=BD

Xét tam giác ABC có: AD=DB (GT) và AE=EC (GT)

suy ra DE là đường trung bình của tam giác ABC (đ/n) suy ra DE=1/2BC (t/c)

DE=1/2DF (GT)

suy ra BC=DF

Xét tứ giác DBCF có: CF=DB, DF=BC (CMT)

suy ra: tứ giác DBCF là hình bình hành (dhnb) suy ra CF//AB

b) Có DE là đường trung bình của tam giác ABC (CMT) suy ra DE//BC (t/c)

Có DE=1/2BC (CMT) hay BC=2.DE