K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

Áp dụng định lí Pytago vào tam giác ABC vuông tại B

Ta được:AB2+BC2=AC2

Hay: 52+BC2=132

=>BC2=132-52

=>BC2=169-25

=>BC2=144

=>BC=12 cm

Vậy Bc= 12 cm.

a, Áp dụng định lý Pitago:

`AB^2  + AC^2 = BC^2`

`=> 25 + AC^2 = 169`

`=> AC^2 = 144`

`=> sqrt 144  = 12`.

b. Áp dụng định lý Pytago ta có:

`AB^2 + AC^2 = BC^2`

`16 + 49 = BC^2`

`BC^2 = 65`

`BC  = sqrt 65`.

13 tháng 5 2022

Áp dụng định lí Pitago trong tam giác ABC vuông tại A

AC = BC2 + AB2

       = 132 + 52    

        = \(\sqrt{194}\)  = 14 cm

Áp dụng định lí Pitago trong tam giác ABC cân tại A

BC = AB2  + AC2

       = 42  + 72  

       = \(\sqrt{65}\) = 8 cm

Ta có \(AB^2+AC^2\)=\(5^2+12^2\)=25+144=169

Lại có \(BC^2\)=\(13^2\)=169

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow Tam\) giác ABC vuông tại A

\(\Rightarrow\) Cạnh huyền của tam giác đó là BC

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm)

$BH=BC-CH=13-\frac{144}{13}=\frac{25}{13}$ (cm)

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:

undefined

26 tháng 1 2016

a) Ap dụng định lí Py - ta - go vào tam giác vuông ABC có

BC^2 = AB^2 + AC^2

13^2 = 5^2  + AC^2

AC^2 = 13^2 - 5^2

AC^2 = 169 - 25

AC^2 = 144

AC = 12 cm

b) Xét tam giác vuông ABE và tam giác vuông DBE có :

 BE cạnh huyền chung

AB = DB  ( gt )

Suy ra tam giác vuông ABE = tam giác vuông DBE ( cạnh huyền - góc nhọn )

Suy ra góc ABE = góc DBE (2 góc tương ứng )

Suy ra BE là tia phân giác cuả góc B

 

 

 

 

13 tháng 2 2022

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=12cm\)

Ta có : \(S_{ABC}=\dfrac{1}{2}AB.AC;S_{ABC}=\dfrac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{60}{13}cm\)

Theo định lí Pytago tam giác ABH vuông tại H

\(BH=\sqrt{AB^2-AH^2}=\dfrac{25}{13}cm\)

-> CH = BC - BH = \(13-\dfrac{25}{13}=\dfrac{154}{13}\)cm 

a: AC=12cm

b: Xét ΔKEB vuông tại K và ΔAEB vuông tại A có 

EB chung

\(\widehat{KBE}=\widehat{ABE}\)

Do đó: ΔKEB=ΔAEB

Suy ra: \(\widehat{KEB}=\widehat{AEB}\)