Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Góc DAC là góc nằm trong tam giác ABD, nên ta có thể tính được bằng cách lấy tổng các góc trong tam giác ABD trừ đi góc ADB: Góc DAC = 180° - góc ABD = 180° - 60° = 120°
Góc ADB là góc nằm trong tam giác CBD, nên ta có thể tính được bằng cách lấy tổng các góc trong tam giác CBD trừ đi góc CDB:
Góc ADB = 180° - góc CBD = 180° - 20° = 160°
Vậy số đo các góc DAC và ADB lần lượt là 120° và 160°.

a, Xét ΔABD và ΔBDC có :
\(\widehat{A}=\widehat{DBC}\left(gt\right)\)
\(\widehat{ABD}=\widehat{BDC}\) (AB//CD, slt)
\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\)
b, Ta có : \(\Delta ABD\sim\Delta BDC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{BD}=\dfrac{AD}{DC}\)
hay \(\dfrac{6}{12}=\dfrac{8}{BC}\)
\(\Rightarrow BC=\dfrac{12.8}{6}=16\left(cm\right)\)

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\hat{EBC}=\hat{DCB}\) (ΔABC cân tại A)
Do đó: ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>\(\hat{ECB}=\hat{DBC}\)
=>\(\hat{KBC}=\hat{KCB}\)
=>ΔKBC cân tại K
=>KB=KC
Ta có; ΔEBC=ΔDCB
=>EB=DC và EC=DB
ta có: EC=EK+CK
DB=DK+BK
mà EC=DB và KB=KC
nên KE=KD
Xét ΔKEB vuông tại E và ΔKDC vuông tại D có
KE=KD
KB=KC
Do đó: ΔKEB=ΔKDC
c: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
=>\(\hat{BAK}=\hat{CAK}\)
=>AK là phân giác của góc BAC