Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c: Ta sẽ cm góc BDN = góc HND ( vì cùng bằng góc AND)
Thật vậy: BDN = AND slt
HND = AND (dễ cm tam giác ANH cân tại N, AH dễ cm là đường cao, nên đồng thời là phân giác)
Þtứ giác BHND là hình thang cân
Câu d: Gọi I là giao điểm của HM và DK
Xét tứ giác ADBN có
BD = AN (=HN vì BHND là hình thang cânÞ BD = HN, AHCK là hcn ÞAN = HN)
suy ra Tứ giác ADBN là hbh ÞM là trung điểm của DN suy ra MD = MN
Xét tam giác EDN có MI song song EN, MD = MN (cmt)suy ra MI là đường trung bình hay ID = IE (1)
Tương tự xét tam giác KIH có NE là đường trung bình hay EK = IE (2)
Từ (1) và (2) suy ra ID = IE = EK. Vậy DE = 2EK
a
Dễ dàng chứng minh AIHK là hình chữ nhật nên AH=IK.
b
Gọi O là giao điểm của IK và AH.
Do AM là đường trung tuyến ứng với cạnh huyền của tam giác vuông nên MA=MC
\(\Rightarrow\Delta\)MAC cân tại M => \(\widehat{MAC}=\widehat{MCA}\left(1\right)\)
Do O là giao điểm 2 đường chéo của hình chữ nhật nên OA=OK => tam giác OAK cân tại O \(\Rightarrow\widehat{OKA}=\widehat{OAK}\left(2\right)\)
Cộng vế theo vế của (1);(2) ta có:
\(\widehat{MAK}+\widehat{OKA}=\widehat{MCK}+\widehat{OAK}=\widehat{AHC}=90^0\)
\(\Rightarrowđpcm\)
c
AIHK là hình vuông nên AH là đường phân giác.Mà AH là đường cao nên tam giác ABC cân tại A.
Mà tam giác ABC vuông tại A nên ABC vuông cân tại A.
Vậy để tứ giác AIHK là hình vuông thì tam giác ABC phải là tam giác vuông cân.