Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Cho tam giac ABC(A=90) AB=6cm;AC=8cm?
a>giai tam giac ABC b> phan giac cua goc A cat BC tai D Tinh BD;CD c> goi E;F lan luot la hinh chieu cua D tren AB va AC Tu giac AEDF la hinh gi ? Tinh chu vi va dien h cua tu giac AEDF
a)
Tam giác ABC là tam giác vuông nên áp dụng định lí Pitago, ta có:
*BC^2=AB^2+AC^2=100=>BC=10cm
*tính góc thig bạn có thể dùng nhiều cách: định lí sin, định lí cosin, công thức lượng giác
-Công thức lượng giác:sin B= AC/BC=0,8 =>B~ 53*8**
=>C~ 36*52**
b)Áp dụng định lí đường phân giác AD của tam giác ABC ta có:
BD/AB= CD/AC
Lại theo tính chất dãy tỉ số bằng nhau, có:
BD/AB= CD/AC= (BD+CD)/ (AB+AC)= BC/(AB+AC)= 10/14= 5/7
Vậy:
*BD/AB=5/7
=>BD= (AB.5)/7=30/7~4,286 cm
*BD+DC=BC
=>DC= BC-BD= 5,714 cm
c)
Vì E, F lần lượt là hình chiếu của D trên AB và AC nên góc AED= góc DFA=90*
Xét thấy tứ giác AEDF có 3 góc vuông nên AEDF là hình vuông
d)
*Xét tam giác vuông DFC:
Theo công thức lượng giác có: sin C= DF/DC
=>DF= sin C. DC= 3,428 cm
*AF+ FC= AC
=>AF= AC-FC= 4,572 cm
*Chu vi AEDF=2.DF+2.AF= 16 cm
*Diện tích AEDF=AF.DF= 15,673 cm^2
Tam giác ABC là tam giác vuông nên áp dụng định lí Pitago, ta có:
*BC^2=AB^2+AC^2=100=>BC=10cm
*tính góc thig bạn có thể dùng nhiều cách: định lí sin, định lí cosin, công thức lượng giác
-Công thức lượng giác:sin B= AC/BC=0,8 =>B~ 53*8**
=>C~ 36*52**
b)Áp dụng định lí đường phân giác AD của tam giác ABC ta có:
BD/AB= CD/AC
Lại theo tính chất dãy tỉ số bằng nhau, có:
BD/AB= CD/AC= (BD+CD)/ (AB+AC)= BC/(AB+AC)= 10/14= 5/7
Vậy:
*BD/AB=5/7
=>BD= (AB.5)/7=30/7~4,286 cm
*BD+DC=BC
=>DC= BC-BD= 5,714 cm
c)
Vì E, F lần lượt là hình chiếu của D trên AB và AC nên góc AED= góc DFA=90*
Xét thấy tứ giác AEDF có 3 góc vuông nên AEDF là hình vuông
d)
*Xét tam giác vuông DFC:
Theo công thức lượng giác có: sin C= DF/DC
=>DF= sin C. DC= 3,428 cm
*AF+ FC= AC
=>AF= AC-FC= 4,572 cm
*Chu vi AEDF=2.DF+2.AF= 16 cm
*Diện tích AEDF=AF.DF= 15,673 cm^2
1/
a/ Ta có AB < BC (5cm < 6cm)
=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)
=> \(\widehat{ABC}< \widehat{A}\)
b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))
Cạnh AD chung
=> \(\Delta ADB\)= \(\Delta ADC\)(c. g. c) (đpcm)
c/ Ta có \(\Delta ABC\)cân tại A
=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)
và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)
=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)
=> F là trung điểm AB (đpcm)
d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)
=> G là trọng tâm \(\Delta ABC\)
và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))
=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)
=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)
Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:
\(BG=\sqrt{BD^2+GD^2}\)
=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)
=> \(BG=\sqrt{9+\frac{64}{9}}\)
=> \(BG=\sqrt{\frac{145}{9}}\)
=> BG \(\approx\)4, 01 (cm)
a, BA = BD (gt)
=> Δ ABD cân tại B (đn)
góc ABC = 60 (gt)
=> Δ ABD đều (dấu hiệu)
b) Ta có\(\widehat{A}\)=90 độ và\(\widehat{B}\)=60 độ =>\(\widehat{C}\)=30 độ (1)
Mà BI là phân giác của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)
từ (1) và (2) => Δ IBC cân tại I
c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ
=> \(\widehat{AID}\)=120 độ
=> \(\widehat{DIC}\)=60 độ
Xét Δ BIA và Δ CID có:
DI=AI (Δ BIA=Δ BID)
\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ
IB=IC(vìΔ IBC cân)
=>ΔBIA=Δ CID(c.g.c)
=> BA=CD mà BA=BD=> BD=DC
=> D là trung điểm của BC
d) vì AB=\(\dfrac{1}{2}\) BC nên BC=12 cm
Áp dụng định lí py-ta-go ta có:
BC2=AB2+AC2
=> AC2=BC2−AB2
=> AC2=144 - 36=108 cm
=> AC= \(\sqrt{108}\)(cm)
vậy BC=12 cm; AC= \(\sqrt{108}\)cm
a: Xét ΔAIK vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIK}=\widehat{DIC}\)
Do đó: ΔAIK=ΔDIC
Suy ra: IK=IC
hay ΔIKC cân tại I
b: Xét ΔBKC có BA/AK=BD/DC
nên AD//KC
c: Ta có: BK=BC
nên B nằm trên đường trung trực của KC(1)
ta có: IK=IC
nên I nằm trên đường trung trực của KC(2)
Ta có: MK=MC
nên M nằm trên đường trung trực của KC(3)
Từ (1), (2)và (3) suy ra B,I,M thẳng hàng
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-60^0\)
hay \(\widehat{ACB}=30^0\)
Xét ΔABC vuông tại A có
\(\widehat{ACB}=30^0\)(cmt)
Cạnh đối diện của \(\widehat{ACB}\) là cạnh AB
Do đó: \(AB=\dfrac{1}{2}\cdot BC\)(Định lí)
\(\Leftrightarrow BC=2\cdot AB=2\cdot6=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=12^2-6^2=108\)
\(\Leftrightarrow AC=6\sqrt{3}cm\)
Xét ΔABC có CD là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AD}{AC}=\dfrac{BD}{BC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{AD}{6\sqrt{3}}=\dfrac{BD}{12}\)
mà AD+BD=AB(D nằm giữa A và B)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6\sqrt{3}}=\dfrac{BD}{12}=\dfrac{AD+BD}{6\sqrt{3}+12}=\dfrac{AB}{6\sqrt{3}+12}=\dfrac{6}{6\left(2+\sqrt{3}\right)}=2-\sqrt{3}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6\sqrt{3}}=2-\sqrt{3}\\\dfrac{BD}{12}=2-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=12\sqrt{3}-18\left(cm\right)\\BD=24-12\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Vậy: \(AD=12\sqrt{3}-18\left(cm\right)\); \(BD=24-12\sqrt{3}\left(cm\right)\)
???