K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020
https://i.imgur.com/wJ1ouLH.jpg
20 tháng 2 2020

thank you ban nhiu yeu

3 tháng 1 2018

a) Xét tứ giác AMIN, ta có:

\(\widehat{A}\) = 90o (△ABC vuông tại A)

\(\widehat{M}\) = 90o (IM ⊥ AB tại M)

\(\widehat{N}\) = 90o (IN ⊥ AC tại N)

Vậy tứ giác AMIN là hình chữ nhật.

b) *Xét △AIC, ta có:

IA = IC (AI là đường trung tuyến của △vABC)

⇒ △AIC cân tại A

Mà IN ⊥ AC (gt)

Nên IN là đường cao của △AIC

⇒ Đồng thời là đường trung tuyến

⇒ AN = NC

*Xét tứ giác ADCI, ta có:

IN = ND (gt)

AN = NC (cmt)

⇒ ADCI là hình bình hành

Mà AI = IC (cmt)

Vậy ADCI là hình thoi.

c) Gọi O là giao điểm BN và AI

Vì ADCI là hthoi (cmt)

⇒ AI // CD

\(\widehat{AIN}\) = \(\widehat{CDN}\) (so le trong)

*Cm: △INP = △DNK (g.c.g)

⇒ IP = DK

*Vì ADCI là hthoi (cmt)

⇒ AI = DC

*Ta có:

AN = NC (cmt)

⇒ BN là đường trung tuyến

*Xét △ABC, ta có:

AI, BN là đường trung tuyến (gt,cmt)

Mà AI, BN cắt nhau tại B (theo cách vẽ)

Nên P là trọng tâm của △ABC

\(\dfrac{IP}{AI}\)= \(\dfrac{1}{3}\)

Hay \(\dfrac{DK}{DC}\)= \(\dfrac{1}{3}\)

12 tháng 12 2016

Hướng giải: 

a) Áp dụng đường trung bình của tam giác ( gợi ý : tam giác CAF) 

b) Áp dụng đường trung bình của tam giác ( gợi ý : tam giác CAF) - câu a

kq: hình bình hành (dấu hiệu: tứ giác có 2 cạnh đối song song và bằng nhau)

c) cm BFKC là hình chữ nhật 

(bằng cách: - cm BFKC là hình bình hành theo dấu hiệu tứ giác có 2 cặp cạnh đối song song

- cm BFKC là hình chữ nhật theo dấu hiệu hình bình hành có 1 go1cv vuông là hình chữ nhật) 

Áp dụng tính chất hình chữ nhật có 2 đường chéo bằng nhau và CẮT NHAU TẠI TRUNG ĐIỂM MỖI ĐƯỜNG) 

d) EI // OC (do OEIC là hình bình hành - cmt ở câu b)

Có chung điểm I => HI // EI (// OC) hay HK // EI 

17 tháng 11 2022

a: Xét tứ giác AEMD có

góc AEM=góc ADM=góc DAE=90 độ

nên AEMD là hình chữ nhật

b: Vì M đối xứng với N qua AB

nên ABvuông góc với MN tại E và E là trung điểm của MN

Xét tứ giác AMBN có

E là trung điểm chung của AB và MN

nên AMBN là hình bình hành

mà MA=MB

nên AMBN là hình thoi

c: Xét tứ giác ANMC có

NM//AC

NM=AC

Do đó: ANMC là hình bình hành

=>AM cắt CN tại trung điểm của mỗi đường

=>C,O,N thẳng hàg