Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
gọi I là giao điểm của BD và CE
ta có E là trung điểm cua AB nên EB bằng 3 cm
xét △EBI có \(\widehat{I}\)=900 có
EB2 = EI2 + BI2 =32=9 (1)
tương tự IC2 + DI2 = 16 (2)
lấy (1) + (2) ta được
EI2+DI2+BI2+IC2=25
⇔ ED2+BC2=25
xét △ABC có E là trung điểm của AB và D là trung điểm của AC
⇒ ED là đường trung bình của tam giác
⇒ 2ED =BC
⇔ ED2=14BC2
⇒ 14BC2+BC2=25
⇔ 54BC2=25
⇔ BC2=20BC2=20
⇔ BC=√20
Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)
\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)
Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)
Mà: AH2=BH.CH
=> AH2.AH2=BH.CH.AH2
<=> AH4=20736
=> AH=12cm
=> BH=9cm ; CH=16cm
Vậy BC=25cm
câu a) bn có thể vào câu hỏi tương tự xem, cái này làm vui thôi
Ta có: \(BN=\frac{BH^2}{AB};CM=\frac{CH^2}{AC};AB.AC=AH.BC;BH.CH=AH^2\)
\(\sqrt[3]{BC^2}=\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\)
\(\Leftrightarrow\)\(BC^2=BN^2+CM^2+3\sqrt[3]{\left(BN.CM\right)^2}\left(\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\right)\)
\(\Leftrightarrow\)\(BC^2=BH^2-NH^2+CH^2-MH^2+3\sqrt[3]{\left(\frac{\left(BH.CH\right)^2}{AB.AB}\right)^2}.\sqrt[3]{BC^2}\)
\(\Leftrightarrow\)\(BC^2=\left(BH^2+CH^2\right)-\left(NH^2+MH^2\right)+3\sqrt[3]{\left(\frac{AH^4}{AH.BC}\right)^2}.\sqrt[3]{BC^2}\)
\(\Leftrightarrow\)\(BC^2=\left(BH+CH\right)^2-2BH.CH-\left(NH^2+MH^2\right)+3\sqrt[3]{\frac{AH^6}{BC^2}}.\sqrt[3]{BC^2}\)
\(\Leftrightarrow\)\(BC^2=BC^2-2AH^2-AH^2+3AH^2\) ( do \(NH^2=AM^2\) )
\(\Leftrightarrow\)\(BC^2=BC^2\) ( luôn đúng )
\(\Rightarrow\)\(\sqrt[3]{BC^2}=\sqrt[3]{BN^2}+\sqrt[3]{CM^2}\) đúng
b) bằng một cách nào đó \(\Delta NBH\) đã đồng dạng với \(\Delta ABC\) ( có góc B chung ) \(\Rightarrow\)\(\frac{BN}{AB}=\frac{BH}{BC}\)
Tương tự: \(\Delta MHC~\Delta ABC\) ( có góc C chung ) \(\Rightarrow\)\(\frac{CM}{AC}=\frac{CH}{BC}\)
\(\Rightarrow\)\(\frac{BN}{AB}+\frac{CM}{AC}=\frac{BH+CH}{BC}=1\)
\(\Leftrightarrow\)\(BN.AC+CM.AB=AB.AB\)
\(\Leftrightarrow\)\(BN\sqrt{AC^2}+CM\sqrt{AB^2}=AB.AC\)
\(\Leftrightarrow\)\(BN\sqrt{CH.BC}+CM\sqrt{BH.BC}=AH.BC\)
\(\Leftrightarrow\)\(BN\sqrt{CH}+CM\sqrt{BH}=AH\sqrt{BC}\) ( chia 2 vế cho \(\sqrt{BC}\ne0\) ) đpcm
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Thánh Ca ơi đây là toán lớp 9 mình nhờ bạn giải toán lớp 9 chứ ko phải là mấy bài toán lớp 3, 4 đâu nha bạn
bạn ko giải đc thì thôi đừng bình luận để mình mong chờ
A B C H D K
a) Ta có: \(1+1=2\Leftrightarrow\frac{AB^2}{AB^2}+\frac{AC^2}{AC^2}=2\Leftrightarrow\frac{BC^2-AC^2}{AB^2}+\frac{BC^2-AB^2}{AC^2}=2\)
\(\Leftrightarrow\frac{BC^2}{AB^2}+\frac{BC^2}{AC^2}-\frac{AC^2}{AB^2}-\frac{AB^2}{AC^2}=2\)(*)
Lại có: \(\Delta\)DHA ~ \(\Delta\)ABC (g.g) \(\Rightarrow\frac{BC}{AB}=\frac{AH}{HD}\Leftrightarrow\frac{BC^2}{AB^2}=\frac{AH^2}{HD^2}\)(1)
\(\Delta\)ABC ~ \(\Delta\)KAH (g.g) \(\Rightarrow\frac{BC}{AC}=\frac{AH}{HK}\Leftrightarrow\frac{BC^2}{AC^2}=\frac{AH^2}{HK^2}\)(2)
\(\Delta\)ABC ~ \(\Delta\)HBA (g.g) \(\Rightarrow\frac{AC}{AB}=\frac{AH}{BH}\Leftrightarrow\frac{AC^2}{AB^2}=\frac{AH^2}{BH^2}\)(3)
Tương tự: \(\frac{AB}{AC}=\frac{AH}{CH}\Leftrightarrow\frac{AB^2}{AC^2}=\frac{AH^2}{CH^2}\)(4).
Thay hết (1); (2); (3) và (4) vào (*) ta được: \(\frac{AH^2}{HD^2}+\frac{AH^2}{HK^2}-\frac{AH^2}{BH^2}-\frac{AH^2}{CH^2}=2\)
\(\Leftrightarrow\frac{1}{HD^2}+\frac{1}{HK^2}-\frac{1}{BH^2}-\frac{1}{CH^2}=\frac{2}{AH^2}\)(Chia cả 2 vế cho AH2)
\(\Leftrightarrow\frac{1}{HD^2}+\frac{1}{HK^2}=\frac{1}{BH^2}+\frac{1}{CH^2}+\frac{2}{AH^2}\)(đpcm).
b) Ta có: \(\Delta\)ABC ~ \(\Delta\)DBH (g.g) \(\Rightarrow\frac{AB}{AC}=\frac{DB}{DH}\)
\(\Delta\)ABC ~ \(\Delta\)KHC (g.g) \(\Rightarrow\frac{AB}{AC}=\frac{HK}{KC}\). Nhân theo vế 2 hệ thức trên:
\(\Rightarrow\frac{AB^2}{AC^2}=\frac{DB.HK}{KC.DH}\Leftrightarrow\frac{AB^2}{AC^2}.\frac{DH}{HK}=\frac{DB}{KC}\)(5)
Dễ chứng minh tứ giác ADHK là hình chữ nhật \(\Rightarrow\frac{DH}{HK}=\frac{AK}{AD}\)
Mà \(\Delta\)DAK ~ \(\Delta\)CAB (g.g) \(\Rightarrow\frac{AK}{AD}=\frac{AB}{AC}\)\(\Rightarrow\frac{DH}{HK}=\frac{AB}{AC}\)(6)
Từ (6) & (5) \(\Rightarrow\frac{AB^2}{AC^2}.\frac{AB}{AC}=\frac{DB}{KC}\Leftrightarrow\frac{AB^3}{AC^3}=\frac{DB}{KC}\)(đpcm).
c) Theo hệ thức lượng trong tam giác vuông: \(BH^2=BD.AB;\) \(CH^2=CK.AC\)
\(\Rightarrow\left(BH.CH\right)^2=BD.AB.CK.AC=BD.CK.AB.AC\)
Mặt khác: \(S_{ABC}=\frac{AB.AC}{2}=\frac{AH.BC}{2}\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow\left(BH.CH\right)^2=BD.CK.BC.AH\).
Lại có: \(AH^2=BH.CH\)(Hệ thức lượng)
\(\Rightarrow AH^4=BD.CK.BC.AH\Leftrightarrow AH^3=BD.CK.BC\)(đpcm).
Kurokawa neko: câu a bạn có thể giải theo hệ thức lượng sẽ ngắn và đơn giản hơn nhiều
Hình tự vẽ nhá ^^
Chứng minh được \(tgAMHN\) là hình chữ nhật \(\Rightarrow MN=AH\)
Chứng minh được \(\Delta HMB~\Delta CHA\)(G-G) \(\Rightarrow\frac{BM}{AH}=\frac{HB}{AC}\)
Chứng minh được \(\Delta CHN~\Delta AHB\Rightarrow\frac{CN}{AH}=\frac{AM}{HB}\)
Chứng minh được \(\Delta AMN~\Delta ACB\left(c-g-c\right)\Rightarrow\frac{BC}{MN}=\frac{AC}{AM}\)
\(\Rightarrow\frac{BM.CN.BC}{MN.AH.AH}=\frac{HB.AM.AC}{AC.HB.AH}=1\Leftrightarrow BM.CN.BC=MN^3\)