Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác BAE và tam giác CAD có
EA=EC gt
gócEAB = góc CAD (2 góc đói đỉnh)
BA=AD gt
vậy tam giác BAE = tam giác CAD
b)Nối E với D ta có EA=EC
BA=BD
=> hai đường chéo cắt nhau tai trung điểm mõi đường là hình bình hành
vậy tứ giác CBED là HBH
=> EB//DC
C) ta có góc MAD+góc NAD =180 ĐỘ
vậy 3 điểm M,A,N thẳng hàng(đpcm)
a. Xét △ABE và △ADC ta có:
AB = AD (gt)
AE = AC (gt)
∠BAE = ∠DAC (đối đỉnh)
Do đó △ABE = △ADC (c.g.c)
Vậy BE = CD (2 cạnh tương ứng)
b. Ta có: △ABE = △ADC (cmt)
=>∠AEB = ∠ACD (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
Vậy BE // CD
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a) Ta có AD = AB và AE = CD. Vì AD = AB, nên tam giác ABD là tam giác cân tại A. Tương tự, tam giác AEC là tam giác cân tại A. Do đó, ta có ∠ABD = ∠BAD và ∠CAE = ∠EAC. Vì ∠BAD = ∠CAE, nên ∠ABD = ∠EAC. Vì tam giác ABD và tam giác AEC là tam giác cân tại A, nên ta có BD = AB và CE = AE. Do đó, ta có BD = AB = AE = CE. b) Ta có BD = AB và CE = AE. Vì BD = AB và CE = AE, nên ta có BD = CE. Vì BD = CE, nên tam giác BCD là tam giác cân tại B. Vì tam giác BCD là tam giác cân tại B, nên ta có ∠BCD = ∠CBD. Vì ∠BCD = ∠CBD, nên ∠BCD + ∠CBD = 180°. Do đó, ta có ∠BCD + ∠CBD = 180°. Vì ∠BCD + ∠CBD = 180°, nên tam giác BCD là tam giác đều. Vì tam giác BCD là tam giác đều, nên ta có BE = CD. c) Gọi M là trung điểm của BE và N là trung điểm của CD. Vì M là trung điểm của BE, nên ta có BM = ME. Vì N là trung điểm của CD, nên ta có CN = ND. Vì BM = ME và CN = ND, nên ta có BM + CN = ME + ND. Do đó, ta có BM + CN = ME + ND. Vì BM + CN = ME + ND, nên ta có BN = MD. Vì BN = MD, nên tam giác BMD là tam giác cân tại B. Vì tam giác BMD là tam giác cân tại B, nên ta có ∠BMD = ∠BDM. Vì ∠BMD = ∠BDM, nên ∠BMD + ∠BDM = 180°. Do đó, ta có ∠BMD + ∠BDM = 180°. Vì ∠BMD + ∠BDM = 180°, nên tam giác BMD là tam giác đều. Vì tam giác BMD là tam giác đều, nên ta có BM = MD. Vì BM = MD, nên ta có BM = MD = AM. Vậy ta có AM = AN.