K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

a) Tg ABC có :

AN=NC (gt)

BM=MC (gt)

=> AP=PB ( t/c 3 đường trung tuyến trong tg )

b) Có : \(AO=\frac{2}{3}AM\)(t/c đường trung tuyến)

\(\Rightarrow OM=\frac{1}{3}AM\)

\(\Rightarrow AO=2OM\left(đccm\right)\)

#H

11 tháng 9 2021

a) Xét ∆ANE và ∆CNM có:

          ^ANE = ^CNM (đối đỉnh)

          AN = CN (gt)

          ^EAN = ^MCN (AE//MC, so le trong)

 Do đó ∆ANE = ∆CNM (g.c.g)

=> AE = CM (hai cạnh tương ứng)

Mà BM = CM (gt) nên AE = BM 

Tứ giác AEMB có AE = BM và AE // BM nên là hình bình hành => AB = ME (đpcm)

b) Tứ giác AECM có AE = CM (cmt) và AE // CM nên là hình bình hành

∆ABC đều nên AM là đường trung tuyến cũng là đường cao => AMC = 900 

Tứ giác AMCE là hình bình hành có một góc vuông nên là hình chữ nhật (đpcm)

c) Ta có: MC = 1/2BC = 1/2AB = 1/2.16 = 8 (cm) và AB = AC = 16 (cm)

∆AMC vuông tại M suy ra AM^2 = AC^2 - MC^2 = 16^2-8^2 = 192 (theo định lý Pythagoras)

=> AM = 8√3 (cm)

Diện tích hình chữ nhật AMCE là 8√3 . 8 = 64√3 (cm^2)

11 tháng 9 2021

a) Xét ∆ANE và ∆CNM có:

          ^ANE = ^CNM (đối đỉnh)

          AN = CN (gt)

          ^EAN = ^MCN (AE//MC, so le trong)

 Do đó ∆ANE = ∆CNM (g.c.g)

=> AE = CM (hai cạnh tương ứng)

Mà BM = CM (gt) nên AE = BM 

Tứ giác AEMB có AE = BM và AE // BM nên là hình bình hành => AB = ME (đpcm)

b) Tứ giác AECM có AE = CM (cmt) và AE // CM nên là hình bình hành

∆ABC đều nên AM là đường trung tuyến cũng là đường cao => AMC = 900 

Tứ giác AMCE là hình bình hành có một góc vuông nên là hình chữ nhật (đpcm)

c) Ta có: MC = 1/2BC = 1/2AB = 1/2.16 = 8 (cm) và AB = AC = 16 (cm)

∆AMC vuông tại M suy ra AM^2 = AC^2 - MC^2 = 16^2-8^2 = 192 (theo định lý Pythagoras)

=> AM = 8√3 (cm)

Diện tích hình chữ nhật AMCE là 8√3 . 8 = 64√3 (cm^2)