Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Trong ∆ BCD,ta có:
K là trung điểm của BC (gt)
N là trung điểm của CD (gt)
Nên NK là đường trung bình của ∆ BCD
⇒ NK // BD và NK = 1/2 BD (1)
*Trong ∆ BED,ta có:
M là trung điểm của BE (gt)
I là trung điểm của DE (gt)
Nên MI là đường trung bình của ∆ BED
⇒ MI // BD và MI = 1/2 BD (t/chất đường trung bình trong tam giác) (2)
Từ (1) và (2) suy ra: MI // NK và MI = NK
Nên tứ giác MKNI là hình bình hành.
*Trong ∆ BEC ta có MK là đường trung bình.
⇒ MK = 1/2 CE (t/chất đường trung bình của tam giác)
BD = CE (gt). Suy ra: MK = KN
Vậy hình bình hành MKNI là hình thoi.
⇒IK ⊥ MN (t/chất hình thoi).
Áp dụng định lí về đường trung bình của tam giác để chứng minh MI = IN = NK = KM (cùng bằng \(\dfrac{BD}{2}\) và \(\dfrac{CE}{2}\) )
MINK là hình thoi nên \(IK\perp MN\)
Xét tam giác EBD có : IM là đường trung bình Của tam giác EBD vậy ta có :IM=1/2DB * Xét tam giác DEC có : IN là đường trung bình của tam giác DEC vậy ta có :IN=1/2 EC** Mà DB= EC *** Chứng minh tương tự ta có : NK là đường trung bình của tam giác DCB vậy NK=1/2 DB ****; MK là đường trung bình của tam giác BEC vậy : MK=1/2EC ****** theo *; ** ; *** ; ****; *****ta có : NK=MK=IM=IN vậy tứ giác IMNK là hình thoi mà trong hình thoi hai đg chéo vuông góc với nhau suy ra : IKvuông góc với MN
Giải
Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\) là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì
\(MI=KN=\frac{DE}{2}\left(1\right)\)
\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)
\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)
\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha
A B C E D M N I K
Xét tg ABC có: E là t/đ của AB (gt) và D là t/đ của AC (gt)
=> DE là đg trung bình của tg ABC => ED = 1/2. BC ; ED//BC
Xét hthang EDCB(ED//BC) có: M là t/đ của BE (gt) và N là t/đ của DC(gt)
=> MN là đg trung bình của hthang EDCB => MN//DE//BC ; MN = 1/2.(DE+BC) . MÀ DE=1/2.BC (cmt)=> MN=3/2 . DE
=> MI+IK+KN =3/2 . DE (1)
xét tg BDE có: M là t/đ của BE(gt) ; MI//ED ( vì I thuộc MN ; MN//DE) => I là r/đ của BD => MI là đg trung bình của tg BDE
=> MI =1/2.DE (2)
C/m tương tự ta đc: KN là đg trung bình của tg CDE => KN= 1/2.DE (3)
Từ (2) ,(3)=> MI=KN =1/2.DE (*)
Thay (2),(3) vào (1) ta đc: 1/2. DE +IK +1/2. DE =3/2. DE => IK =1/2. DE (**)
Từ (*),(**)=> MI=IK=KN (đpcm)
Bạn có thể giải thích cho mình vì sao = 1/2.(DE+BC)Mà DE = 1/2BC => MN =3/2 là sao vậy mình không hiểu đoạn đó