K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDBC có 

M là trung điểm của BC

ME//DC

Do đó: E là trung điểm của DB

Xét ΔDBC có 
M là trung điểm của BC

E là trung điểm của DB

Do đó: EM là đường trung bình của ΔDBC

7 tháng 11 2021

giúp mik ý b nx dc ko

 

1 tháng 3 2017

B) Theo giả thiết ta có BC song song với DE vậy : BK song song với IE

Suy ra : \(\widehat{BKM}\)= \(\widehat{EIM}\) ( góc sole trong)

                \(\widehat{CBE}\)  = \(\widehat{BED}\) ( hai góc sole trong)

                    từ hai điều trên ta suy ra : \(\widehat{EMD}\)= \(\widehat{BMC}\)  

           mà hai góc này lại lằm ở vị trí đối đỉnh của tam giác BKM và EMI suy ra : KMI  thẳng hàng 

  mà ta lại có theo giả thiết AKI thẳng hàng suy ra : A,I,M,K thẳng hàng

          Mik thấy mik trình bày vẫn chưa đc lắm mong cậu hiểu cho ^_^ chúc bạn hok giỏi

15 tháng 11 2023

a, Xét tứ giác MNPB có:

MN//PB (Vì MN//BC và P ϵ BC)

MB//NP (Vì AB//NP và M ϵ AB)

=> Tứ giác MNPB là hbh

b, Ta có:

M là trung điểm AB 

MN//BC

=> MN là đường trung bình của tam giác ABC

=> N là trung điểm AC, MN=BC/2 và MN//BC

Xét 2 tam giác AMN và NPC có

AM=NP (Vì AM=BM, BM=NP)

AN=NC

MN=PC ( Vì MN=BC/2, MN=BP)

=> Tam giác AMN = Tam giác NPC (c.c.c)

 

 

 

20 tháng 10 2021

Cứu cái j cơ

????????????????????????

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0
1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

15 tháng 1 2022

a) Xét tứ giác AEBN:

+ M là trung điểm của AB (gtt).

+ M là trung điểm của EN (N đối xứng E qua M).

=> Tứ giác AEBN là hình bình hành (dhnb).

b) Xét tam giác ABC vuông tại A: AD là trung tuyến (gt).

=> AD = CD = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).

Xét tam giác HEC và tam giác DEA:

+ EC = EA (E là trung điểm của AC).

\(\widehat{HEC}=\widehat{DEA}\) (đối đỉnh).

\(\widehat{HCE}=\widehat{DAE}\) (AD // HC).

=> Tam giác HEC = Tam giác DEA (c - g - c).

Xét tứ giác ADCH:

+ AD // HC (gt).

+ AD = HC (Tam giác HEC = Tam giác DEA).

=> Tứ giác ADCH là hình bình hành (dhnb).

Mà AD = CD (cmt).

=> Tứ giác ADCH là hình thoi (dhnb).

 

15 tháng 1 2022

chỗ mà AD = CD (cmt ) cm nằm ở đâu ấy ạ?

 

a: Xét tứ giác BMNP có

MN//BP

MB//NP

=>BMNP là hình bình hành

b: Xét ΔABC có

M là trung điểm của AB

MN//BC

=>N là trung điểm của AC

Xét tứ giác AQCP có

N là trung điểm chung của AC và QP

=>AQCP là hình bình hành

c: AQCP là hình thoi thì AP=PC

=>AP=BC/2

Xét ΔABC có

AP là trung tuyến

AP=BC/2

=>ΔABC vuông tại A

=>góc BAC=90 độ

16 tháng 8 2023

Tại sao MN//BP và MB//NP