Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
hay \(\widehat{BAD}=\widehat{BDA}\)
b: Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)
\(\widehat{HAD}+\widehat{BDA}=90^0\)
mà \(\widehat{BAD}=\widehat{BDA}\)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là tia phân giác của góc HAC
c, Ta có: Góc CAD= góc HAD
hay góc KAD= góc HAD
Xét △ AHD và △AKD có:
AD chung
Góc AHD= góc AKD= 90 độ
Góc KAD= góc HAD
=> △AHD= △AKD (cạnh huyền- góc nhọn)
=> AH= AK (2 cạnh tương ứng)
a )
xét 2 tam giác ABD và tam giác BHD có :
^B1 = ^ B2( BD là tia phân giác của ^ B)
BD cạnh chung
suy ra: tam giác ABD = tam giác BHD ( cạnh huyền - góc nhọn )
suy ra : AB = BH ( 2 cạnh tương ứng )
b)
trong tam giác vuông BHD có :
^ H = 90 độ
SUY RA ^ B2 +^D = 90 độ
suy ra : ^B2 = ^ D = 45 ĐỘ
MÀ ^ BDH = 45 độ
suy ra : ^ BDK = 45 độ ( góc D chung)
vậy ^ BDK = 45 độ
mình làm vậy đó nếu đúng thì cho minh 1 k , nếu sai thì thông cảm nha
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
b: Sửa đề: AF=EC
Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó;ΔDAF=ΔDEC
=>AF=EC
c: Sửa đề: CM AE//CF
Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)
nên AE//CF
d: Sửa đề: I là trung điểm của FC
Ta có: IF=IC
=>I nằm trên đường trung trực của CF(3)
Ta có: DF=DC(ΔDAF=ΔDEC)
=>D nằm trên đường trung trực của CF(4)
ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BF=BC
=>B nằm trên đường trung trực của CF(5)
Từ (3),(4),(5) suy ra B,D,I thẳng hàng
AE là phân giác góc BAc nê BAE=EAD=50
xét tam giác ABC có:
A+B+C=180 nên B =50
Mà DBC=10 nên ABD=40
Gọi giao của AE và BD là I
Xét tam giác ABI có IBA+BAI+BIA=180
nên BIA=90 tức AE là đường cao
xét tam giác ABD có AE là đường cao
AE là phân giác nên tam giác ABD cân tại A
hay AE là trung trực của BD