Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta dễ chứng minh \(\widehat{BIC}=90^o+\dfrac{\widehat{A}}{2}\).
Ta thấy \(\widehat{BFK}=\widehat{A}+\widehat{AEF}=\dfrac{\widehat{A}}{2}+\widehat{IAE}+\widehat{AEF}\) \(=90^o+\dfrac{\widehat{A}}{2}\)
Nên \(\widehat{BIC}=\widehat{BFK}\)
Xét 2 tam giác BIC và BFK, ta có:
\(\widehat{FBK}=\widehat{IBC}\) (do BI là tia phân giác của \(\widehat{FBC}\)) và \(\widehat{BIC}=\widehat{BFK}\left(cmt\right)\)
\(\Rightarrow\Delta BIC~\Delta BFK\left(g.g\right)\) (đpcm)
b) Từ \(\Delta BIC~\Delta BFK\Rightarrow\dfrac{BI}{BF}=\dfrac{BC}{BK}\) \(\Rightarrow\dfrac{BI}{BC}=\dfrac{BF}{BK}\)
Xét 2 tam giác BIF và BCK, ta có
\(\dfrac{BI}{BC}=\dfrac{BF}{BK}\) và \(\widehat{IBF}=\widehat{CBK}\)
\(\Rightarrow\Delta BIF~\Delta BCK\left(c.g.c\right)\)
\(\Rightarrow\widehat{BKC}=\widehat{BFI}\)
Mà \(\widehat{BFI}=90^o\) nên \(\widehat{BKC}=90^o\) (đpcm)
Gọi T là giao điểm của EF và BC. Gọi J là trung điểm DT. Khi đó vì \(\widehat{TKD}=90^o\) nên \(K\in\left(J,JD\right)\). Đặt \(JB=b,JC=c,JD=JT=d\).
Dễ thấy \(AE=AF,BF=BD,CD=CE\) nên \(\dfrac{FA}{FB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)
Hơn nữa, áp dụng định lý Menelaus cho tam giác ABC với cát tuyến EFT, ta có: \(\dfrac{FA}{FB}.\dfrac{TB}{TC}.\dfrac{EC}{EA}=1\)
Từ đó suy ra \(\dfrac{DB}{DC}=\dfrac{TB}{TC}\)
\(\Leftrightarrow\dfrac{JD-JB}{JC-JD}=\dfrac{JB+JT}{JC+JT}\)
\(\Leftrightarrow\dfrac{d-b}{c-d}=\dfrac{b+d}{c+d}\)
\(\Leftrightarrow\left(d-b\right)\left(c+d\right)=\left(c-d\right)\left(b+d\right)\)
\(\Leftrightarrow cd+d^2-bc-bd=bc+cd-bd-d^2\)
\(\Leftrightarrow2d^2=2bc\)
\(\Leftrightarrow JD^2=JB.JC=JK^2\) \(\left(vìJD=JK\right)\)
\(\Leftrightarrow\dfrac{JK}{JC}=\dfrac{JB}{JK}\)
Xét tam giác JBK và JKC, có:
\(\dfrac{JK}{JC}=\dfrac{JB}{JK}\) và \(\widehat{J}\) chung nên
\(\Delta JBK\sim\Delta JKC\left(c.g.c\right)\)
\(\Rightarrow\dfrac{KB}{KC}=\dfrac{JB}{JK}=\dfrac{JB}{JD}=\dfrac{b}{d}\)
Lại có \(d^2=bc\)
\(\Leftrightarrow d^2-bd=bc-bd\)
\(\Leftrightarrow d\left(d-b\right)=b\left(c-d\right)\)
\(\Leftrightarrow\dfrac{b}{d}=\dfrac{d-b}{c-d}\)
Như vậy \(\dfrac{KB}{KC}=\dfrac{b}{d}=\dfrac{d-b}{c-d}=\dfrac{JD-JB}{JC-JD}=\dfrac{DB}{DC}\)
Do đó theo tính chất đường phân giác trong tam giác, KD là phân giác \(\widehat{BKC}\) (đpcm)