Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABH\)và \(\Delta CBA\)có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{B}\) chung
suy ra: \(\Delta ABH~\Delta CBA\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow\)\(BC^2=15^2+20^2=625\)
\(\Rightarrow\)\(BC=\sqrt{625}=25\)
\(\Delta ABH~\Delta CBA\)\(\Rightarrow\)\(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)
\(\Rightarrow\)\(\frac{AH}{20}=\frac{BH}{15}=\frac{15}{20}=\frac{3}{4}\)
\(\Rightarrow\)\(\frac{AH}{20}=\frac{3}{4}\)\(\Rightarrow\)\(AH=15\)
\(\frac{BH}{15}=\frac{3}{4}\)\(\Rightarrow\)\(BH=11,25\)
a: \(S_{ABC}=\dfrac{12\cdot10}{2}=60\left(cm^2\right)\)
b: Xét tứ giác AHBE có
M là trung điểm chung của AB và HE
góc AHB=90 độ
Do đó: AHBE là hình chữ nhật
c: Xét tứ giác ABFC có
H là trung điểm chung của AF và BC
AB=AC
Do đo: ABFC là hình thoi
a: Xét tứ giác AHCE có
D là trung điểm chung của AC và HE
góc AHC=90 độ
Do đó: AHCE là hình chữ nhật
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
=>BC=2*BH=6cm
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot4=2\cdot6=12\left(cm^2\right)\)
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
b: Xét tứ giác AEBC có
N là trung điểm chung của AB và EC
nên AEBC là hình bình hành
=>AE//BC và AE=BC
=>AD//AE và AD=AE
=>A là trung điểm của DE
Xét tứ giác AHCE có
D là trung điểm của AC
D là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
\(S_{AHCE}=AH\cdot HC=6\cdot8=48\left(cm^2\right)\)