Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM: a) Ta có: OA + AB = OB (A nằm giữa O và B vì OA < OB)
OC + CD = OD (C \(\in\)OD)
mà OA = OC (gt); AB = CD (gt) => OB = OD
Xét t/giác OCB và t/giác OAD
có: OC = OA (gt)
\(\widehat{O}\) : chung
OB = OD (gt)
=> t/giác OCB = t/giác OAD (c.g.c)
=> BC = AD (2 cạnh t/ứng)
b) Ta có: \(\widehat{OCB}+\widehat{BCD}=180^0\) (kề bù)
\(\widehat{OAD}+\widehat{DAB}=180^0\) (kề bù)
mà \(\widehat{OCB}=\widehat{OAD}\) (Vì t/giác OCB = t/giác OAD) => \(\widehat{BCD}=\widehat{DAB}\)
Xét t/giác AEB và t/giác CED
có: \(\widehat{EAB}=\widehat{ECD}\) (cmt)
AB = CD (gt)
\(\widehat{EBA}=\widehat{CDE}\) (vì t/giác OCB = t/giác OAD)
=> t/giác AEB = t/giác CED (g.c.g)
c) Xét t/giác OBE và t/giác ODE
có: OB = OE (Cm câu a)
EB = ED (vì t/giác AEB = t/giác CED)
OE : chung
=> t/giác OBE = t/giác ODE (c.c.c)
=> \(\widehat{BOE}=\widehat{DOE}\) (2 góc t/ứng)
=> OE là tia p/giác của góc xOy
d) Ta có: OA = OC (gt)
=> O \(\in\)đường trung trực của AC
Ta lại có: t/giác AEB = t/giác CED (cmt)
=> AE = CE (2 cạnh t/ứng)
=> E \(\in\)đường trung trực của AC
Mà O \(\ne\)E => OE là đường trung trực của AC
e) Ta có: OD = OB (cmt)
=> OM là đường trung trực của DB (1)
EB = ED (vì t/giác AEB = t/giác CED)
=> EM là đường trung trực của DB (2)
Từ (1) và (2) => OM \(\equiv\)EM
=> O, E, M thẳng hàng
f) Ta có: OA = OC (gt)
=> t/giác OAC cân tại O
=> \(\widehat{OAC}=\widehat{OCA}=\frac{180^0-\widehat{O}}{2}\) (1)
Ta lại có: OB = OD (cmt)
=> t/giác OBD cân tại O
=> \(\widehat{B}=\widehat{D}=\frac{180^0-\widehat{O}}{2}\) (2)
Từ (1) và (2) => \(\widehat{OAC}=\widehat{B}\)
mà 2 góc này ở vị trí đồng vị
=> AC // BD
a: XétΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét ΔAHM vuông tại H và ΔCKM vuông tại K có
MA=MC
\(\widehat{AMH}=\widehat{CMK}\)
DO đó: ΔAHM=ΔCKM
Suy ra: MH=MK
Xét tứ giác AHCK có
Mlà trung điểm của AC
M là trung điểm của HK
Do đó: AHCK là hình bình hành
Suy ra: AK=CH
a, xét tam giác ADB và tam giác ADE có:
AE=AB(gt)
\(\widehat{EAD}\)=\(\widehat{BAD}\)(gt)
AD cạnh chung
\(\Rightarrow\)tam giác ADB=tam giác ADE
b, gọi o là giao điểm của AD và EB
xét tam giác AOE và tam giác AOB có:
AE=AB(gt)
\(\widehat{OAE}\)=\(\widehat{OAB}\)(gt)
AO cạnh chung
\(\Rightarrow\)tam giác AOE=tam giácAOB(c.g.c)
\(\Rightarrow\)OE=OB suy ra O là trung điểm của EB(1)
\(\Rightarrow\)\(\widehat{AOE}\)=\(\widehat{AOB}\)=90 độ(2)
từ (1) và (2) suy ra AD là đg trung trực của BE
c, vì tam giác ADB=tam giác ADE(câu a) suy ra \(\widehat{DEA}\)=\(\widehat{DBA}\)
\(\Rightarrow\)\(\widehat{DBF}\)=\(\widehat{DEC}\)
còn lại bn tự làm nhé(phần sau cx dễ)
Ta có hình vẽ:
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
Ta có: tam giác ABM = tam giác ACM
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
=> AM \(\perp\)BC (đpcm)
b/ Xét tam giác BDA và tam giác EDC có:
BD = DE (GT)
\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)
AD = DC (GT)
Vậy tam giác BDA = tam giác EDC (c.g.c)
=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CE (đpcm)
c/ Đã vẽ và kí hiệu trên hình
d/ Xét tam giác AMB và tam giác CMF có:
AM = MF (GT)
\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)
BM = MC (GT)
Vậy tam giác AMB = tam giác CMF (c.g.c)
=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CF
Ta có: AB // CE (1)
Ta có: AB // CF (2)
Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng
ai lam jum minh ko jup voi
dang can gap lam nha
lên goole mà tra