K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2018

a) Vì AB = 3 x AM, AC = 3 x AN, nên MB = 2/3 x AB, NC = 2/3 x AC.

Từ đó suy ra : dt (MBC) = 2/3 x dt (ABC) (chung chiều cao từ C

dt (NCB) = 2/3 x dt (ABC) (chung chiều cao từ B)

Vậy dt (MBC) = dt (NCB) mà tam giác MBC và tam giác NCB có chung đáy BC, nên chiều cao từ M bằng chiều cao từ N xuống đáy BC hay MN song song với BC. Do đó BMNC là hình thang.

Từ MB = 2/3 x AB, nên dt (MBN) = 2/3 x dt (ABN) (chung chiều cao từ N) hay dt (ABN) = 2/3 x dt (MBN).

Hơn nữa từ AC = 3 x AN, nên NC = 2 x AN, do đó dt (NBC) = 2 x dt (ABN) (chung chiều cao từ B) ; suy ra dt (NBC) = 3/2 x 2 x dt (MBN) = 3 x dt (MBN).

Mà tam giác NBC và tam giác MBN có chiều cao bằng nhau (cùng là chiều cao của hình thang BMNC). Vì vậy đáy BC = 3 x MN.

b) Gọi BN cắt CM tại O. Ta sẽ chứng tỏ AI cũng cắt BN tại O. Muốn vậy, nối AO kéo dài cắt BC tại K, ta sẽ chứng tỏ K là điểm chính giữa của BC (hay K trùng với I).

Theo phần a) ta đã có dt (NBC) = 2 x dt (ABN). Mà tam giác NBC và tam giác ABN có chung đáy BN, nên chiều cao từ C gấp 2 lần chiều cao từ A xuống đáy BN. Nhưng đó là chiều cao tương ứng của hai tam giác BCO và BAO có chung đáy BO, vì vậy dt (BCO) = 2 x dt (BAO)

Tương tự ta cũng có dt (BCO) = 2 x dt (CAO).

Do đó dt (BAO) = dt (CAO). Hai tam giác BAO và CAO có chung đáy AO, nên chiều cao từ B bằng chiều cao từ C xuống đáy AO. Đó cũng là chiều cao tương ứng của hai tam giác BOK và COK có chung đáy OK, vì vậy dt (BOK) = dt (COK). Mà hai tam giác BOK và tam giác COK lại chung chiều cao từ O, nên hai đáy BK = CK hay K là điểm chính giữa của cạnh BC. Vậy điểm K trùng với điểm I hay BN, CM, AI cùng cắt nhau tại điểm O.

17 tháng 5 2018

Hình như hơi thiếu thì phải

17 tháng 5 2018

Đề đúng rồi bạn ạ

8 tháng 7 2016

k nhak rồi giải

9 tháng 7 2016

rui giai di

8 tháng 6 2018

Hình của bài như thế này phải không ? Nếu như thế thì mk giải cho ! Bài này cô mk dạy rồi !

Phân tích : Vì BP = \(\frac{1}{3}\)BC và hai hình tam giác : ABP và ABC có chung chiều cao hạ từ đỉnh A xuống đáy BC nên diện tích tam giác ABP bằng \(\frac{1}{3}\)diện tích tam giác ABC.

Tượng tự,diện tích mỗi hình tam giác BCM và CAN cũng bằng \(\frac{1}{3}\)diện tích tam giác ABC.

Vậy tổng diện tích ba tam giác : ABP , BMC , CAN bằng diện tích tam giác ABC.

Về mặt lý thuyết thì chúng có thể phủ kín tam giác ABC . Nhưng thật ra chúng để thừa lại phần diện tích tam giác IEF và chũng lại phủ lên các tam giác: IMC , EAN , FBP mỗi tam giác phủ hai lần nên thừ ra một lần . Chính điều này chứng tỏ :

                                                      SFBP + SEAN + SIMC = SIEF

Chúc bạn hok tốt !

A B C M N E I F