K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

B,D,C là 3 điểm thẳng hàng mà tam giác sao đc đề sai r kìa -.- DE giao BC song song sao đc ?

5 tháng 11 2018

câu c bn tự lm nha

xét tam giác AED và tam giác CEF ta có

AE=CE ( giả thiết)

DE=EF ( gt )

góc AED = góc FEC ( đối đỉnh)

suy ra tam giác AED=tam giác CEF( c-g-c)

=> AD =CF

=> ra BD = CF( cùng bằng AD)

b) ta có tam giác AED = tam giác CEF ( cmt)

=> góc ADE = góc EFC mà hai góc này nằm ở vị trí sole tròn nên AB song song với CF => góc BDC = góc FCD

xét tam giác BDC và tam giác FCD ta có

CD cạnh chung 

DB=CF ( theo câu a)

góc BDC=góc FCD

=>> tam giác BDC = tam giác FCD ( c-g-c)

đúng 99 % đs hình bn tự vẽ nha với câu c mình ko biết lm ahihi

24 tháng 12 2016

a) Xét t/g FEC và t/g DEA có:

FE = DE (gt)

FEC = DEA ( đối đỉnh)

EC = EA (gt)

Do đó, t/g FEC = t/g DEA (c.g.c)

=> FC = DA (2 cạnh tương ứng)

Mà DA = DB (gt) nên FC = DB (đpcm)

b) t/g FEC = t/g DEA (câu a)

=> FCE = DAE (2 góc tương ứng)

Mà FCE và DAE là 2 góc so le trong nên FC // AD hay FC // AB

Xét t/g BDC và t/g FCD có:

BD = FC (câu a)

BDC = FCD (so le trong)

CD là cạnh chung

Do đó, t/g BDC = t/g FCD (c.g.c) (đpcm)

c) t/g BDC = t/g FCD (câu b) => BC = FD (2 cạnh tương ứng)

BCD = FDC (2 góc tương ứng)

Mà DE = 1/2FD (gt)

BCD và FDC là 2 góc so le trong nên DE // BC; DE = 1/2BC (đpcm)

 

14 tháng 12 2018

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD 

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = 12FD (E là trung điểm của FD) => DE = 1/2BC

14 tháng 12 2018

a/Xét ΔAED va ΔCEF có:

AE=CE(vì E là trung điểm của AC)

∠AED=∠CEF(đối đỉnh)

ED=EF(vì E là trung điểm của DF)

nên: ΔAED=ΔCEF

do đó: AD=CF

mà AD=BD (vì D là trung điểm của AB)

vậy BD=CF

b/Ta có: ∠EAD=∠ECF(vì ΔAED=ΔCEF)

mà hai góc này ở vị trí so le trong

nên AB//CF

Ta có:AB//CF(cmt)

nên ∠BDC=∠FCD (hai góc so le trong)

Xét: ΔBDC và ΔFCD có:

DC là cạnh chung

∠BDC=∠FCD(cmt)\

DB=CF(cmt)

nên ΔBDC=ΔFCD(c-g-)

c/Ta có: ∠BCD=∠FDC(vì ΔBDC=ΔFCD)

mà hai góc này ở vị trí so le trong

nên DE//BC

Ta có: DE=1/2DF=12DF(vì E là trung điểm của DF)

mà DF=CB(vì ΔFCD=ΔBDC)

vậy DE=1/2CB

27 tháng 12 2017

A B C D E F

Mình lầm câu c thôi

Trên tia đối tia ED lấy F sao cho ED=EF

Xét \(\Delta AED\)\(\Delta CEF\) có :

\(AE=EC\left(gt\right)\\ \widehat{AED}=\widehat{CEF}\left(đ^2\right)\\ ED=EF\left(gt\right)\\ \Rightarrow\Delta AED=\Delta CEF\left(c-g-c\right)\\ \Rightarrow AD=CF;\widehat{A}=\widehat{ECF}\\ \widehat{A}=\widehat{ECF}\)

=> AB // CF => góc BDC = góc FCD

AD = CF => BD = CF

Xét \(\Delta BDC\)\(\Delta FCD\) có :

\(BD=CF\left(cmt\right)\\ \widehat{BDC}=\widehat{FCD}\left(cmt\right)\\ CD\left(chung\right)\\ \Rightarrow\Delta BCD=\Delta FDC\left(c-g-c\right)\\ \Rightarrow DF=BC;\widehat{FDC}=\widehat{BCD}\\ \Rightarrow DE=\dfrac{1}{2}BC;\)

và DE // BC

27 tháng 12 2017

a) Cm: DB = CF

Xét ΔDAE và ΔFCE có:

AE = EC (E là trung điểm AC)

DE = EF (E là trung điểm của DF)

∠DEA = ∠CEF (đối đỉnh)

=> ΔDAE = ΔFCE

=> AD = CF (2 cạnh tương ứng)

mà AD = DB

=> CF = DB (đpcm)

a: Xét ΔABC có 

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình

=>DE//BC và DE=BC/2

mà DF=2DE

nên DF//BC và DF=BC

=>DFCB là hình bình hành

Suy ra: DB=CF

b: Xét ΔBDC và ΔFCD có 

CD chung

BD=FC

BC=FD

Do đó: ΔBDC=ΔFCD

c: Ta có: DE là đường trung bình

=>DE//BC

d: Ta có: DE là đường trung bình

=>DE=1/2BC

17 tháng 11 2016

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD (c.g.c)

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = \(\frac{1}{2}FD\) (E là trung điểm của FD) => DE = \(\frac{1}{2}BC\)

31 tháng 12 2021

hình đâu bạn banhqua