\(\)B=\(30^0\) .Góc giữ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

tam giác mà tới 4 cạnh là không tốt đâu nha bạn

30 A B C 30 120 véc tơ AB véc tơ BC đoạn này được kéo dài từ hướng của véc tơ AB ; để dể sát nhận góc tạo bởi 2 véc tơ AB và BC ? => góc đó là góc cần tìm

từ \(\overrightarrow{AB}\) ta kéo dài ra tạo thành 1 góc ứng với cạnh của \(\overrightarrow{BC}\) và cạnh đó là cạnh cần tìm

ta có cạnh cần tìm \(=180-30=150^o\)

vậy góc tạo bởi 2 véc tơ \(\overrightarrow{AB};\overrightarrow{BC}\)\(150^o\) \(\Rightarrow\) chọn đáp án \(C\)

Câu 1 : Cho tam giác ABC có D,M lần lượt là trung điểm của AB,CD. Đẳng thức nào sau đây đúng? A. \(\overrightarrow{MA}\) +2. \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) = 0 B. \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) + \(\overrightarrow{MD}\) = 0 C. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) = 0 D. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + 2. \(\overrightarrow{BM}\) = 0 Câu 2 : Cho...
Đọc tiếp

Câu 1 : Cho tam giác ABC có D,M lần lượt là trung điểm của AB,CD. Đẳng thức nào sau đây đúng?

A. \(\overrightarrow{MA}\) +2. \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) = 0

B. \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) + \(\overrightarrow{MD}\) = 0

C. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) = 0

D. \(\overrightarrow{MC}\) + \(\overrightarrow{MA}\) + 2. \(\overrightarrow{BM}\) = 0

Câu 2 : Cho vec-tơ \(\overrightarrow{b}\) \(\ne\) \(\overrightarrow{0}\) , \(\overrightarrow{a}\) = -2 . \(\overrightarrow{b}\) , \(\overrightarrow{c}\) = \(\overrightarrow{a}\) + \(\overrightarrow{b}\) . Khẳng định nào sau đây sai ?

A. \(\overrightarrow{b}\) = \(\overrightarrow{c}\)

B. \(\overrightarrow{b}\)\(\overrightarrow{c}\) ngược hướng

C. \(\overrightarrow{b}\)\(\overrightarrow{c}\) cùng phương

D. \(\overrightarrow{b}\)\(\overrightarrow{c}\) đối nhau

Câu 3 : Cho hình vuông ABCD cạnh a\(\sqrt{2}\) . Tính S= \(\left|2\overrightarrow{AD}+\overrightarrow{DB}\right|\) ?

A. 2a

B. a

C. a\(\sqrt{3}\)

D. a\(\sqrt{2}\)

1

Câu 1: B
Câu 2: A

Câu 3: C

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng? a) BM=\(\frac{2}{5}.BC\) b) CM=\(\frac{3}{5}.BC\) c) M nằm ngoài cạnh BC d) M nằm trên cạnh BC 3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)và \(\overrightarrow{BN}\) ta...
Đọc tiếp

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng?

a) BM=\(\frac{2}{5}.BC\) b) CM=\(\frac{3}{5}.BC\) c) M nằm ngoài cạnh BC d) M nằm trên cạnh BC

3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)\(\overrightarrow{BN}\) ta được

a) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)+\(\frac{2}{5}.\overrightarrow{BN}\) b) \(\overrightarrow{AB=}\)\(-\frac{4}{5}.\overrightarrow{AM}\)\(-\frac{2}{5}.\overrightarrow{BN}\) c) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)-\(\frac{2}{5}.\overrightarrow{BN}\) d) \(\overrightarrow{AB=}-\frac{4}{5}.\overrightarrow{AM}+\frac{2}{5}.\overrightarrow{BN}\)

4/cho tam giác ABC cân tại A, AB=a,\(\widehat{ABC}=30^O\).Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) là :

a) \(\frac{a\sqrt{3}}{2}\) b) \(\frac{a}{2}\) c) a d) \(a\sqrt{3}\)

5/Cho hình thoi ABCD có cạnh bằng a và \(\widehat{BAD}=120^O\).Độ dài của vectơ \(\overrightarrow{CB}-\overrightarrow{BA}\)là:

a) \(a\sqrt{3}\) b) 0 c) a d) \(\frac{a\sqrt{3}}{2}\)

8/cho hình chữ nhật ABCD tâm O và AB= a, BC=\(a\sqrt{3}\).Độ dài của vectơ \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)

a) 2a b) 3a c) \(\frac{a}{2}\) d) a

10/cho hình bình hành ABCD tâm O.Khi đó \(\overrightarrow{AC}+\overrightarrow{BD}\)

a) cùng hướng với \(\overrightarrow{AB}\) b) cùng hướng với \(\overrightarrow{AD}\) c) ngược hướng với \(\overrightarrow{AB}\) d) ngược hướng với \(\overrightarrow{AD}\)

11/Cho lục giác đều ABCDEF tâm O

a) \(\overrightarrow{AB}=\frac{1}{2}.\overrightarrow{FC}\) b) \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}\) c) \(\overrightarrow{AF}+\overrightarrow{CD}=\overrightarrow{0}\) d) \(\overrightarrow{AB}=\overrightarrow{DE}\)

12/ Cho hình bình hành ABCD tâm O.Gọi \(\overrightarrow{v}=\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}+4\overrightarrow{OD.}\)Khi đó

a) \(\overrightarrow{v}=\overrightarrow{AD}\) b) \(\overrightarrow{v}=\overrightarrow{AB}\) c) \(\overrightarrow{v}=2\overrightarrow{AB}\) d) \(\overrightarrow{v}=2\overrightarrow{AD}\)

13/Cho 3 diểm phân biệt A,B,C sao cho \(\overrightarrow{AB}\)\(\overrightarrow{AC}\) ngược hướng và AB=a, AC=b. Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\)

a) a+b b) a-b c)b-a d) \(\left|a-b\right|\)

0

Chọn B

CÁC BẠN GIẢI CHI TIẾT RỒI CHỌN ĐÁP ÁN ĐÚNG GIÙM MK VỚI ^.^ Câu 1: Cho tam giác ABC có trọng tâm G, M là trung điểm của BC. Phân tích \(\overrightarrow{AM}\) theo \(\overrightarrow{GB}\) và \(\overrightarrow{GC}\) A. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) -\(\dfrac{2}{3}\) \(\overrightarrow{GC}\) B. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) + \(\dfrac{3}{2}\) \(\overrightarrow{GC}\) C....
Đọc tiếp

CÁC BẠN GIẢI CHI TIẾT RỒI CHỌN ĐÁP ÁN ĐÚNG GIÙM MK VỚI ^.^

Câu 1: Cho tam giác ABC có trọng tâm G, M là trung điểm của BC. Phân tích \(\overrightarrow{AM}\) theo \(\overrightarrow{GB}\)\(\overrightarrow{GC}\)

A. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) -\(\dfrac{2}{3}\) \(\overrightarrow{GC}\)

B. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) + \(\dfrac{3}{2}\) \(\overrightarrow{GC}\)

C. \(\overrightarrow{AM}\) = \(\dfrac{3}{2}\) \(\overrightarrow{GB}\) - \(\dfrac{3}{2}\) \(\overrightarrow{GC}\)

D. \(\overrightarrow{AM}\) = \(\dfrac{2}{3}\) \(\overrightarrow{GB}\) + \(\dfrac{3}{2}\) \(\overrightarrow{GC}\)

Câu 2: Cho 4 điểm A, B, C, D. Tính \(\overrightarrow{u}\) = \(\overrightarrow{AB}\) + \(\overrightarrow{DC}\) + \(\overrightarrow{BD}\) + \(\overrightarrow{CA}\)

A. \(\dfrac{2}{3}\) \(\overrightarrow{AC}\) B. \(\overrightarrow{AC}\) C. \(\overrightarrow{0}\) D. 2 \(\overrightarrow{AC}\)

Câu 3: Khẳng định nào sau đây là đúng :

A. Hai vecto \(\overrightarrow{a}\) , k\(\overrightarrow{a}\) luôn cùng hướng

B. Hai vecto \(\overrightarrow{a}\) , k \(\overrightarrow{a}\) luôn cùng phương

C. Hai vecto \(\overrightarrow{a}\) , k \(\overrightarrow{a}\) bằng độ dài

D. Hai vecto \(\overrightarrow{a}\) , k \(\overrightarrow{a}\) luôn ngược hướng

Câu 4: Cho k ≠ 0, \(\overrightarrow{a}\)\(\overrightarrow{0}\) . k \(\overrightarrow{a}\)\(\overrightarrow{a}\) cùng hướng khi :

A. k tùy ý B. \(\left|k\right|\) lớn hơn 0 C. k < 0 D. k lớn hơn 0

Câu 5: Cho G là trọng tâm Δ ABC, O là điểm bất kỳ thì :

A. \(\overrightarrow{AG}\) = \(\dfrac{\overrightarrow{OB}+\overrightarrow{OC}}{2}\) B. \(\overrightarrow{AG}\)​ = \(\dfrac{\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AC}}{3}\)

C. \(\overrightarrow{AG}\) = \(\dfrac{2}{3}\) ( \(\overrightarrow{AB}\) + \(\overrightarrow{AC}\) ) D. \(\overrightarrow{OA}\) + \(\overrightarrow{OB}\) + \(\overrightarrow{OC}\) = 3 \(\overrightarrow{OG}\)

3
AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Câu 1:

Theo tính chất trọng tâm và đường trung tuyến, ta thấy \(\overrightarrow {AM}; \overrightarrow{GM}\) là 2 vecto cùng phương, cùng hướng và \(AM=3GM\)

\(\Rightarrow \overrightarrow{AM}=3\overrightarrow{GM}\)

\(=\frac{3}{2}(\overrightarrow{GM}+\overrightarrow{GM})\) \(=\frac{3}{2}(\overrightarrow{GB}+\overrightarrow{BM}+\overrightarrow{GC}+\overrightarrow{CM})\)

\(=\frac{3}{2}[(\overrightarrow{GB}+\overrightarrow{GC})+(\overrightarrow{BM}+\overrightarrow{CM})]\)

\(=\frac{3}{2}(\overrightarrow{GB}+\overrightarrow{GC})\) (vecto \(\overrightarrow{BM}; \overrightarrow{CM}\) là 2 vecto đối nhau nên tổng bằng vecto $0$)

Đáp án B

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Câu 2:

\(\overrightarrow{u}=\overrightarrow{AB}+\overrightarrow{DC}+\overrightarrow{BD}+\overrightarrow{CA}\)

\(=(\overrightarrow{AB}+\overrightarrow{BD})+(\overrightarrow{DC}+\overrightarrow{CA})=\overrightarrow{AD}+\overrightarrow{DA}\)

\(=\overrightarrow{0}\) (tổng của 2 vecto đối nhau)

Đáp án C

Câu 3:

Bạn nhớ rằng \(\overrightarrow{a}; k\overrightarrow{a}(k\in\mathbb{R})\) luôn là 2 vecto cùng phương (tính chất vecto). Nhưng nó mới chỉ là cùng phương thôi. Muốn cùng phương +cùng hướng thì \(k>0\) ; muốn cùng phương + ngược hướng thì \(k< 0\). Nói chung là phụ thuộc vào tính chất của $k$

Câu C thì hiển nhiên sai.

Nên đáp án B đúng

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng?a)  BM=\(\frac{2}{5}.BC\)           b)    CM=\(\frac{3}{5}.BC\)            c)    M nằm ngoài cạnh BC        d)   M nằm trên cạnh BC3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai...
Đọc tiếp

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng?

a)  BM=\(\frac{2}{5}.BC\)           b)    CM=\(\frac{3}{5}.BC\)            c)    M nằm ngoài cạnh BC        d)   M nằm trên cạnh BC

3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)và \(\overrightarrow{BN}\) ta được 

a)  \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)+\(\frac{2}{5}.\overrightarrow{BN}\)                                     b)   \(\overrightarrow{AB=}\)\(-\frac{4}{5}.\overrightarrow{AM}\)\(-\frac{2}{5}.\overrightarrow{BN}\)     

c)  \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}-\frac{2}{5}.\overrightarrow{BN}\)                                    d)   \(\overrightarrow{AB=}-\frac{4}{5}.\overrightarrow{AM}+\frac{2}{5}.\overrightarrow{BN}\)

4/cho tam giác  ABC cân tại A, AB=a,\(\widehat{ABC}=30^O\).Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) là :

a)  \(\frac{a\sqrt{3}}{2}\)    b)    \(\frac{a}{2}\)       c) a         d) \(a\sqrt{3}\)

5/Cho hình thoi ABCD có cạnh bằng a và \(\widehat{BAD}=120^O\).Độ dài của vectơ \(\overrightarrow{CB}-\overrightarrow{BA}\)là:

a)  \(a\sqrt{3}\)    b)    0           c) a                 d)   \(\frac{a\sqrt{3}}{2}\)

8/cho hình chữ nhật ABCD tâm O và AB= a, BC=\(a\sqrt{3}\).Độ dài của vectơ \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\) là

a)  2a         b) 3a          c) \(\frac{a}{2}\)           d) a

10/cho hình bình hành ABCD tâm O.Khi đó \(\overrightarrow{AC}+\overrightarrow{BD}\)

a) cùng hướng với \(\overrightarrow{AB}\)      b)  cùng hướng với \(\overrightarrow{AD}\)      c) ngược hướng với \(\overrightarrow{AB}\)   d) ngược hướng với \(\overrightarrow{AD}\)

11/Cho lục giác đều ABCDEF tâm O

a) \(\overrightarrow{AB}=\frac{1}{2}.\overrightarrow{FC}\)     b)    \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}\)    c)  \(\overrightarrow{AF}+\overrightarrow{CD}=\overrightarrow{0}\)  d)  \(\overrightarrow{AB}=\overrightarrow{DE}\)

12/ Cho hình bình hành ABCD tâm O.Gọi \(\overrightarrow{v}=\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}+4\overrightarrow{OD.}\)Khi đó

a)  \(\overrightarrow{v}=\overrightarrow{AD}\)     b)  \(\overrightarrow{v}=\overrightarrow{AB}\)   c) \(\overrightarrow{v}=2\overrightarrow{AB}\)    d) \(\overrightarrow{v}=2\overrightarrow{AD}\)

13/Cho 3 diểm phân biệt A,B,C sao cho \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) ngược hướng và AB=a, AC=b. Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\)

a) a+b                    b) a-b                  c)b-a                     d) \(\left|a-b\right|\)

 

0
23 tháng 7 2018

quá dễ

Bài 1. a. Cho tam giác ABC. Có I,J,K,L xác định sao cho: 1. \(\overrightarrow{IA}\) - \(\overrightarrow{IB}\) +3\(\overrightarrow{IC}\) =\(\overrightarrow{0}\) 2. \(\overrightarrow{KA}\) +\(\overrightarrow{KB}\) -\(\overrightarrow{KC}\) =\(\overrightarrow{0}\) 3. 2\(\overrightarrow{JA}\) + \(\overrightarrow{JB}\) +\(\overrightarrow{JC}\) =\(\overrightarrow{0}\) 4. \(\overrightarrow{LA}\) +\(\overrightarrow{LB}\) +3\(\overrightarrow{LC}\)...
Đọc tiếp

Bài 1. a. Cho tam giác ABC. Có I,J,K,L xác định sao cho:

1. \(\overrightarrow{IA}\) - \(\overrightarrow{IB}\) +3\(\overrightarrow{IC}\) =\(\overrightarrow{0}\)

2. \(\overrightarrow{KA}\) +\(\overrightarrow{KB}\) -\(\overrightarrow{KC}\) =\(\overrightarrow{0}\)

3. 2\(\overrightarrow{JA}\) + \(\overrightarrow{JB}\) +\(\overrightarrow{JC}\) =\(\overrightarrow{0}\)

4. \(\overrightarrow{LA}\) +\(\overrightarrow{LB}\) +3\(\overrightarrow{LC}\) =\(\overrightarrow{0}\)

Biểu diễn \(\overrightarrow{AI}\), \(\overrightarrow{AJ}\), \(\overrightarrow{BK}\) ,\(\overrightarrow{BL}\) theo \(\overrightarrow{AB}\), \(\overrightarrow{AC}\)

b. Với giải thiết cho như câu a. CMR:

1. với mọi O ta có \(\overrightarrow{OI}\)= \(\frac{1}{3}\)\(\overrightarrow{OA}\) + \(\overrightarrow{OC}\) - \(\frac{1}{3}\)\(\overrightarrow{OC}\)

2. với mọi O ta có \(\overrightarrow{OK}\) = \(\overrightarrow{OA}\) + \(\overrightarrow{OB}\) -\(\overrightarrow{OC}\)

3. với mọi O ta có \(\overrightarrow{OJ}\)= \(\frac{1}{2}\)\(\overrightarrow{OA}\) +\(\frac{1}{4}\)\(\overrightarrow{OB}\) + \(\frac{1}{4}\)\(\overrightarrow{OC}\)

4. với mọi O ta có \(\overrightarrow{OL}\)= \(\frac{1}{5}\)\(\overrightarrow{OA}\) + \(\frac{1}{5}\)\(\overrightarrow{OB}\) + \(\frac{3}{5}\)\(\overrightarrow{OC}\)

Bài 2. Cho tam giác ABC. Gọi I,J xác định sao cho \(\overrightarrow{IC}\) = \(\frac{3}{2}\)\(\overrightarrow{BI}\) ; \(\overrightarrow{JB}\) = \(\frac{2}{5}\)\(\overrightarrow{JC}\)

a. Tính \(\overrightarrow{AI}\),\(\overrightarrow{AJ}\) theo \(\overrightarrow{a}\)= \(\overrightarrow{AB}\), \(\overrightarrow{b}\)= \(\overrightarrow{AC}\)

b. Tính \(\overrightarrow{IJ}\) theo \(\overrightarrow{a}\),\(\overrightarrow{b}\)

Bài 3. Cho tam giác ABC, gọi I là điểm sao cho 3\(\overrightarrow{IA}\)-\(\overrightarrow{IB}\)+2\(\overrightarrow{IC}\)=\(\overrightarrow{0}\). Xác định giao điểm của

a. AI và BC

b. IB và CA

c. IC và AB

0
7 tháng 8 2018

1.D \(\dfrac{1}{3}\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=\dfrac{1}{3}\left(2\overrightarrow{BM}\right)=\dfrac{2}{3}\overrightarrow{BM}=\overrightarrow{BG}\)

2.A \(\overrightarrow{DA}+\overrightarrow{DB}+2.\overrightarrow{DC}=2.\overrightarrow{DM}+2.\overrightarrow{DC}=0\)